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   Abstract—This  paper  presents  a  comprehensive  review  of
emerging technologies for the internet of things (IoT)-based smart
agriculture.  We  begin  by  summarizing  the  existing  surveys  and
describing emergent technologies for the agricultural IoT, such as
unmanned aerial  vehicles,  wireless  technologies,  open-source IoT
platforms, software defined networking (SDN), network function
virtualization  (NFV)  technologies,  cloud/fog  computing,  and
middleware  platforms.  We  also  provide  a  classification  of  IoT
applications for smart agriculture into seven categories: including
smart  monitoring,  smart  water  management,  agrochemicals
applications, disease management, smart harvesting, supply chain
management,  and  smart  agricultural  practices.  Moreover,  we
provide a taxonomy and a side-by-side comparison of the state-of-
the-art  methods  toward  supply  chain  management  based  on  the
blockchain  technology  for  agricultural  IoTs.  Furthermore,  we
present  real  projects  that  use  most  of  the  aforementioned
technologies,  which  demonstrate  their  great  performance  in  the
field  of  smart  agriculture.  Finally,  we  highlight  open  research
challenges  and  discuss  possible  future  research  directions  for
agricultural IoTs.
    Index Terms—Agricultural  internet  of  things  (IoT),  internet  of
things  (IoT),  smart  agriculture,  smart  farming,  sustainable
agriculture.
 

I.  Introduction

AGRICULTURE is the largest source of food in the world.
It has been paramount to the development of civilizations

throughout  history.  The  United  Nations  (UN)  estimates  that
by  2050,  the  world’s  population  will  increase  by  2  billion
people  from  the  current  7.8  billion,  meaning  the  planet  will
need  to  support  about  11  billion  people  by  the  end  of  the
century [1]. As a result, the global demand for food and water
will  continue  to  increase.  Agriculture  is  the  world’s  largest
consumer of water, where it is used to support a wide range of
activities  such  as  irrigation,  watering,  and  cleaning  of
livestock  and  aquaculture;  using  about  70% of  the  world’s
annual  water  consumption  [2].  These  applications  pollute
water  with  high  amounts  of  nutrients,  pesticides,  and  other
pollutants. It would appear that global food production has to
increase  to  satisfy  the  world’s  population  growth.  However,
the Food and Agriculture Organization of the United Nations
(FAO) believes that the challenges of hunger elimination and
food  security  do  not  necessarily  require  an  increase  in
agricultural  production,  even  by  50% [3],  if  agricultural
production systems become more sustainable [4]. Technology,
research,  and  development  must  be  used  to  the  fullest  extent
possible, to realize the principles of sustainable agriculture.

Throughout  the  history  of  agricultural  development  as
shown in Fig. 1, there were four distinct revolutions, namely,
1) age of traditional agriculture featured by human and animal
power, 2) age of mechanized agriculture featured by rumbling
sounds,  3)  age  of  automated  agriculture  featured  by  high-
speed  development,  4)  age  of  smart  agriculture  featured  by
emerging technologies, as discussed by Liu et al. in [18], and
Huang et al. in [19]. Therefore, smart farming offers a path to
sustainability  through  the  use  of  technology.  It  involves  the
use of information and communication technologies (ICTs) in
the  cyber-physical  cycle  of  farm  management,  with  techno-
logies  such  as  the  IoT  and  cloud  computing,  robotics,  and
artificial intelligence (AI) [20]–[24]. Precision Agriculture is a
smart  farming  approach  that  improves  the  accuracy  of
operations  by  giving  each  plant  or  animal  precisely  what  it
needs  to  grow  in  the  best  possible  way,  optimizing  overall
performance  while  reducing  waste,  inputs,  and  pollution.
While precision agriculture is a very sophisticated technology,
it only takes into account variables related to field conditions.
On  the  other  hand,  smart  farming  goes  further  by  making
management  duties  based  not  only  on  geographical  location
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but also on data, which are enforced by context and situational
awareness and driven by real-time events [25].  In these early
years,  smart farming benefited from the advancement of new
technologies  such  as  IoT,  low-cost  and  improved  sensors,
actuators  and  microprocessors,  high-bandwidth  wireless
technologies, cloud-based ICT systems, big data analysis, AI,
and robotics. Farm equipment is no longer the only source of
data;  new  services  are  available  which  turn  data  into  usable
information.  The  application  of  IoT  in  agriculture  aims  to
provide farmers with the appropriate tools to support them in
their  decision  making  and  automation  activities  by  offering
products,  knowledge,  and  services  for  better  productivity,
quality, and profit. IoT is considered part of the internet of the
future,  and will  contain billions of  intelligent  communication
“things”.  Different  authors  have  defined  it  in  many  different
ways  [26]–[28].  Although  the  definition  of “things” has
changed  with  the  advancement  of  technology,  the  primary
objective  of  making  sense  of  computer  information  without
human  intervention  remains  the  same.  There  is  no  single
universal  architecture  of  the  IoT  applications,  and  different
researchers  have  proposed  various  architectures  [26],  [28].
The  same  is  true  for  agricultural  IoT-based  applications
[5]–[7], [10].

Fig. 2 provides  a  comprehensive  overview  of  the  entire
paper,  highlighting  sections,  sub-sections,  and  their  relation-
ships in a visual representation. The red dashed board entitled
IoT  architecture  for  smart  farming  applications  contains  the
principal  layers  that  form  the  core  of  the  paper.  To  better
understand  this  architecture, Fig. 3 demonstrates  an  example
of a smart farm, where IoT and other technologies covered in
this  survey are  presented.  The system structure is  based on a
layered  architecture  composed  of  five  main  layers:  physical,
networking,  middleware,  service,  and  application.  The
physical  layer  includes  different  types  of  sensors,  actuators,
wireless sensor network (WSN), agricultural robots, driverless
tractors,  radio  frequency  identification  (RFID),  unmanned
aerial  vehicles  (UAVs)  to  perform  sensing,  and  control
actions.  Devices  can  be  powered  by  batteries,  which  can  be
recharged  from  some  source  of  renewable  energy  like  solar
panels  and  wind  turbines.  The  data  sent  and  the  commands

received  by  this  layer  pass  throw  the  networking  layer.  It
consists  of  field  gateways  based  either  on  Ethernet,  mobile
networks  (2G/3G/4G/5G),  field  devices  transceivers  using
ZigBee,  long  range  network  protocol  (LoRA),  NB-IoT,
Sigfox, Bluetooth, near field communication (NFC), or WiFi.
The middleware layer encapsulates the hardware and software
complexities  to  simplify  the  use  and  development  of  IoT
applications  and  services.  The  service  layer  provides  several
technologies,  such  as  cloud  computing,  fog  computing,  AI,
and  big  data  for  the  application  layer.  The  application  layer
utilizes  the  services  provided  by  the  previous  layers,  and
various  IoT-based  messaging  protocols,  such  as  constrained
application  protocol  (CoAP),  message  queue  telemetry  tran-
sport  (MQTT),  extensible  messaging  and  presence  protocol
(XMPP),  advanced  message  queuing  protocol  (AMQP),  to
perform a  wide  range  of  agricultural  activities,  with  minimal
human interaction. 

A.  Related Surveys
In  the  literature,  some  surveys  have  covered  different

aspects  of  agricultural  IoT.  In Table I,  we  classify  the  IoT-
based agriculture surveys according to the following criteria:

1) Physical Layer: It states whether the survey outlined the
physical  layer  technologies  for  IoT-based  agriculture,
including UAVs and/or other technologies.

2) Network Layer: It specifies whether the survey described
the network layer communication technologies like 5G and/or
others for IoT-based agriculture.

3) Middleware  Layer: It  clarifies  whether  the  survey
introduced  the  middleware  layer,  and  highlighted  some
middleware platforms for IoT-based agriculture.

4) Service  Layer: It  details  whether  the  survey  took  into
account  the  use  of  emerging  service  technologies,  with
emphasis  on  fog  computing  and  SDN/NFV,  and/or  other
services in the service layer for IoT-based agriculture.

5) Application  Layer: It  specifies  whether  the  survey  took
into account emerging techniques like blockchain, agrivoltaic
applications,  application  layer  protocols,  and/or  other  newest
developments  in  the  application  layer,  for  IoT-based
agriculture.
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Fig. 1.     The four agricultural revolutions.
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Talavera et  al. [5]  reviewed  IoT-based  agro-industrial  and
environmental  applications,  and grouped the selected sources

into  four  application  areas,  namely  monitoring,  control,
logistics,  and  prediction.  The  authors  neither  reviewed  the
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emerging technologies used in the physical layer, nor did they
thoroughly  detail  the  underlying  smart  farming  applications.
Ray  [6]  reviewed  various  applications  of  IoT-based  smart
agriculture.  The  author  also  highlighted  the  requirements  of
IoT-associated  wireless  communication  technologies  and
devices.  Many  case  studies  were  provided,  and  specific
challenges  and  issues  related  to  the  deployment  of  IoT  for
agriculture  was  also  addressed.  However,  the  review  did  not
consider  many  essential  IoT-based  intelligent  agriculture
applications  and  services  from  the  current  literature,  such  as
blockchain technology, fog computing, etc. Tzounis et al. [7]
presented  IoT  technologies  and  their  utility  in  agriculture,  as
well  as  their  value  to  future  farmers,  and  the  challenges  that
face  the  IoT-based  agriculture.  However,  the  review  did  not
include  up-to-date  coverage  of  current  developments  in  the
sector,  including  5G  networks,  SDN/NFV,  blockchain,  and
others.  Elijah et  al. [8]  examined  the  IoT  eco-system  for
agriculture  with  four  main  components,  namely  IoT  devices,
communication  technologies,  data  storage,  and  processing.
The  authors  also  discussed  advantages,  issues,  challenges,
future trends, and opportunities in the agi-IoT eco-system. But
agricultural  IoT-based  services  such  as  SDN/NFV  and  fog
computing  were  missing,  and  emerging  applications  such  as
agrivoltaic  systems  and  blockchain-based  applications  were
not provided.

Khanna  and  Kaur [9]  reviewed  the  various  communication
techniques  used  in  IoT  for  smart  farming.  Although  the

authors  highlighted  the  limitations  and  challenges  facing  the
agricultural sector, they did not examine in depth the evolving
technologies and applications used in the literature. Shi et al.
[10] examined the applications of IoT in protected agriculture
and proposed a system framework with core technologies. The
selected  references  are  grouped  into  three  areas  of  the
application  corresponding  to  plant  management,  animal
husbandry,  and  traceability  of  food/agricultural  supplies.
Nevertheless  there  was  no  thorough  examination  of  the
physical layer. Liu et al. [18] examined both the current state
of  industrial  agriculture  and  the  experiences  of  industrialized
agroproduction models. The authors also discussed the trends
in  technologies  towards  Agriculture  4.0,  but  missed  some  of
the  emerging  ones,  such  as  fog  and  SDN.  Ruan et  al. [11]
conducted  a  literature  review  of  intelligent  agriculture.  The
authors  highlight  emerging  trends  in  both  applied  IoT
techniques and issues of concern to agriculture. However, the
review  omitted  the  middleware  layer  and  some  key  applic-
ations in the sector. Feng et al. [12] reviewed wireless comm-
unication  technologies  for  precision  agriculture,  namely  NB-
IoT, LoRa, and ZigBee, by analyzing agricultural  application
scenarios and experimental tests. The authors did not examine
IoT-based  smart  agriculture  application  protocols  such  as
CoAP  and  MQTT.  Shafi et  al. [13]  reviewed  wireless
communication  technologies,  sensors  and  wireless  nodes,
platforms  for  spectral  imaging  of  crops,  standard  vegetation
indices  used  to  analyze  spectral  images,  and  applications  of
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WSN  in  agriculture.  The  authors  skipped  some  IoT-based
agricultural  enabling  technologies  such  as  middleware
platforms, SDNs, fog computing, and blockchains.

Ayaz et al. [14] stressed the potentials of WSN and IoT in
agriculture,  as  well  as  the  IoT  devices,  and  the  related
networking  protocols.  The  authors  also  discussed  the
challenges  that  should  be  addressed  when  integrating  this
technology  into  traditional  agricultural  practices.  However,
there was a lack of technical details on intelligent agricultural
technologies.  Farooq et  al. [15]  reviewed key components  of
IoT-based  Intelligent  Agriculture,  including  network  techno-
logies,  cloud  computing,  big  data  storage,  analysis,  and
security  issues  were  also  highlighted.  Middleware  layers
platforms  and  technologies  were  not  provided.  Radoglou-
Grammatikis et  al. [16]  provided  an  overview  of  precision
farming,  by  outlining  its  different  aspects  and  technologies
and analyzing the different types of UAVs according to their
specifications  and  payload.  Neither  the  network  technologies
nor  the  services  layer  techniques  were  discussed  by  the
authors.  Ferrag et  al. [17]  discussed  security  and  privacy
issues  and  the  challenges  in  IoT-based  green  agriculture.  To
address  these  issues,  the  authors  proposed  a  classification  of
threat  models  under  five  categories,  including  attacks  on
privacy,  authentication,  confidentiality,  availability,  and
integrity  properties.  The  authors  also  investigate  privacy-
focused  blockchain  solutions  and  their  suitability  for  IoT-

based  green  agriculture.  Other  aspects  such  as  middleware
platforms  and  IoT-based  agricultural  applications  were  not
discussed. 

B.  Contributions
Although  there  are  many  studies  on  IoT-based  smart

agriculture,  most  of  them only  address  some specific  aspects
of  the  topic.  In  this  study,  we  highlight  the  constituent
elements  of  the  domain,  along  with  the  most  emerging
technologies  used  in  it,  in  a  comprehensive  manner.  Our
contributions in this work are:

1)  We  provide  a  list  of  emerging  technologies  for
agricultural  IoTs,  including  unmanned  aerial  vehicles,
wireless  technologies,  open-source  IoT  platforms,  SDN  and
NFV  technologies,  cloud/edge  computing,  and  middleware
platforms.

2)  We  present  IoT  applications  for  smart  agriculture  and
provide  a  classification  into  seven  categories:  smart  monit-
oring,  smart  water  management,  agrochemicals  applications,
disease  management,  smart  harvesting,  supply  chain  manag-
ement, and smart agricultural practices.

3)  We  emphasize  open  research  challenges  and  discuss
possible future research directions for agricultural IoTs.

The  rest  of  this  paper  is  organized  as  follows.  Section  II
presents the physical layer for IoT-based agriculture. Section III
introduces  the  network  layer,  where  an  overview of  some  of
the  communication  technologies  for  smart  farming  are

 

TABLE I  
Related Surveys on Agricultural IoT

Physical L. Network L. Middleware L. Service L. Application L. Year

Survey M UAVs O M 5G O M Platforms M Fog SDN/NFV O M Blockchain Agrivoltaic Protocols O

Talavera
et al. [5] × × × √ × ◑ × × √ ◑ × × √ × × × √ 2017

Ray [6] √ ◑ √ √ × √ √ ◑ √ × × √ √ × × × √ 2017
Tzounis
et al. [7] √ ◑ √ √ × √ √ √ √ ◑ × ◑ √ × × × √ 2017

Elijah
et al. [8]

√ ◑ √ √ × √ √ ◑ √ × × ◑ √ × × × √ 2018

Khanna
and Kaur [9]

× × × √ √ √ × × √ × √ × √ × × × √ 2019

Shi
et al. [10]

√ × √ √ ◑ √ √ ◑ √ √ × √ √ ◑ × × √ 2019

Ruan
et al. [11]

√ ◑ ◑ √ ◑ × × × × × × × √ × × × √ 2019

Feng
et al. [12]

√ × ◑ √ × √ × × √ × × √ √ × × × √ 2019

Shafi
et al. [13]

√ √ √ √ √ √ × × √ ◑ × √ √ × × × √ 2019

Ayaz
et al. [14]

√ √ √ √ ◑ √ × × √ ◑ × √ √ × × × √ 2019

Farooq
et al. [15]

√ √ √ √ × √ × × √ × × √ √ × × × √ 2019

Radoglou-
Grammatikis

et al. [16]
√ √ ◑ × × × × × × × × × √ × × × √ 2020

Ferrag
et al. [17]

√ ◑ ◑ √ √ × × × √ √ √ ◑ √ √ × × √ 2020

Liu et al. [18] √ × ◑ √ ◑ ◑ √ × √ × × √ √ √ √ × √ 2020
Our survey √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ /

(√): Supported; (◑): Partially supported; (×): unsupported. Layer (L.); Mentioned (M); Others (O);
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highlighted, and a brief description of each one is provided. In
Section  IV  we  present  the  middleware  layer  for  IoT-based
agriculture.  In  Section  V  introduces  the  service  layer,  where
we  discuss  various  services  for  smart  farming.  Section  VI
discusses  the  application  layer,  where  we  provide  a
classification  of  IoT  applications  for  smart  agriculture  into
seven  categories.  Besides,  we  provide  a  taxonomy  and  a
comparison  of  cutting-edge  methods  in  supply  chain
management  based on blockchain  technology for  agricultural
IoTs.  Section  VII  provides  real-world  case  studies  that
incorporate most of the technologies discussed in this survey.
Then, we discuss the challenges and future research directions
in  Section  VIII.  Finally,  Section  IX presents  conclusions.  To
help  readers  understand  this  paper,  acronyms  found  in  this
paper are shown in Table II.
 

TABLE II  
Acronyms Used in This Survey

Acronym Description

FAO Food and Agriculture Organization of the United Nations

ICT Information and communication technology

IoT Internet of things

AI Artificial intelligence

WSN Wireless sensor network

RFID Radio frequency identification

NFC Near field communication

UAV Unmanned aerial vehicle

SDN Software defined networking

NFV Network function virtualization

LoRa Long range network protocol

5G Fifth generation communication

LPWAN Low-power wide-area network technologies

3GPP 3rd generation partnership project

GSM Global standard for mobile communication

WCDMA Wide-band code division multiple access

LTE Long-term evolution

CPS Cyber physical system

M2M Machine to machine

QoE Quality of experience

QoS Quality of service

CoAP Constrained application protocol

AMQP Advanced message queuing protocol

XMPP Extensible messaging and presence protocol

MQTT Message queue telemetry transport

HTTP Hypertext transfer protocol

GPS Global positioning system
 

II.  Physical Layer

Also  known  as  the  perception  layer,  the  physical  layer
includes  different  types  of  sensors,  actuators,  WSN,  RFID
tags,  and  readers.  Its  main  tasks  are  to  link  objects  in  IoT
networks,  and  to  monitor,  gather,  and  process  status
information  related  to  these  objects  via  deployed  intelligent

devices,  and to forward the processed data to the upper layer
[29].  It  also  receives  control  commands  from the  application
layer  so  that  the  related  equipment,  such  as  agricultural
machinery, take corresponding actions. 

A.  Sensor Nodes
Fig. 4 illustrates  the  architecture  of  a  typical  sensor  node.

The  basic  components  of  each  sensor  node  are  networking,
sensing,  processing,  and  power  units  [30].  Also,  as  required
by  the  application,  other  sub-units  may  exist,  such  as  power
generator,  display,  mobilizer,  and  others.  Analog  to  digital
converter  (ADC) converts the analog signals provided by the
sensors  from  the  monitored  event  into  digital  signals  and
sends them to the processing unit, allowing the sensor node to
cooperate with other nodes to perform the affected tasks [30].

1)  Radio  Frequency  Identification  Technology  (RFID):
RFID  enables  remote  identification.  Unlike  bar  code
technology,  it  can  identify  multiple  tags  situated  within  the
same  zone  without  the  need  of  human  presence  [31].  There
are  many  uses  for  RFID  in  agriculture,  including  livestock
identification  and  tracking  [32],  and  food  chain  traceability
[33].

2)  Wireless  Sensor  Networks: WSN  has  many  important
applications in several fields; agriculture and the food industry
are  no  exception.  It  consists  of  several  components  called
“nodes”, a set of intelligent devices that are used to collect the
data  needed  for  applications.  There  are  three  basic  functions
of  a  sensor  network:  detection,  communication,  and
calculation  using  hardware  and  software  [30].  Distributed
nodes  that  collect  data  are  known as  source  nodes,  while  the
node that  collects  data  from all  source nodes are  known as  a
gateway node [34]. There are many variants of WSNs used in
agricultural  applications  which  include:  wireless  sensor  and
actuator  network  (WSAN)  [35],  terrestrial  wireless  sensor
networks  (TWSN)  [36],  wireless  underground  sensor
networks (WUSN) [37], underwater wireless sensor networks
(UWSN) [38], multi-media WSN [39], and mobile WSN [40]. 

B.  Hardware Boards
Hardware  boards  are  typically  used  to  control  equipment

and devices automatically. Numerous projects have used such
devices  in  smart  farming  research  [49]–[51],  some  of  which
are well known:

1)  Arduino: is  an  open-source  electronic  platform  for
hardware  and  software,  which  develops  and  manufactures
single-board  microcontrollers  kits.  It  receives  inputs  from
many sensors, as well as controlling actuators [52].

●  Arduino  UNO: is  an  open-source  microcontroller  board
based on the ATmega328P microcontroller. It features a set of
digital  and  analog  input/output  (I/O)  pins  that  can  be
connected  to  various  expansion  boards  and  other  circuits.
Shirsath et  al. [53]  used  Arduino  UNO  to  implement  a
greenhouse  monitoring  and controlling  system,  with  multiple
sensors  and  actuators,  including  soil  moisture  sensor,
humidity sensor, and temperature sensor.

2)  Raspberry  Pi: is  a  low  cost,  tiny,  and  single-board
computer  developed  by  the  Raspberry  Pi  Foundation.  It  is  a
low-cost  computer  operating  under  Linux  that  provides  a  set
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of  general-purpose  input/output  (GPIO)  pins,  allowing  the
control  of  electronic  components  and  the  exploration  of  IoT
[54].  Mehra et  al. [55]  developed  an  intelligent  IoT  based
hydroponic system. A case study for tomato plant growth was
designed using Arduino and Raspberry Pi3.

3)  Espressif: is  a  semiconductor  company  focused  on
developing WiFi and Bluetooth low-power IoT solutions [56].

●  ESP8266: is  a  very  flexible  WiFi  module  manufactured
by  Espressif  Systems,  easily  adaptable  to  the  Arduino
platform,  for  easy  integration  into  a  wide  array  of  projects
Khoa et  al. [49]  used  the  ESP8266  module  for  connecting
low-cost  and  effective  smart  agriculture  system  components
for controlling environmental factors in agriculture.

● ESP32: is  a  series  of  low-cost,  low-power  systems  on  a
chip  microcontroller,  with  integrated  Wi-Fi  and  Bluetooth
communication technologies. It is a successor to the ESP8266
microcontroller.  Biswas  and  Iqbal  [50]  presented  a  low  cost
automated  solar  water  pumping  system  for  smart  irrigation.
The  sensor  detected  parameters  are  sent  to  the  ESP32
microcontroller,  which  sent  it  to  the  cloud,  and  use  it  to
control the water pump motor.

4) Intel Edison: is a tiny sized compute module for wearable
and IoT devices. It features I/O pins compatible with Arduino
UNO,  and  is  capable  of  running  light-weight  Linux
distributions  [57].  Bhowmick et  al. [51]  developed  a  sensor
network capable of monitoring the environmental variables of
vertical  agricultural  warehouses  which  is  based  on  the  Intel
Edison wireless module.

5)  BeagleBone: is  a  small,  low-power,  open-source,  and
system-on-a-chip  computer  produced  by  Texas  Instruments
[58]. The Beagle family revs as high as 1 GHz. Ali et al. [59]
implemented  a  real-time  green  internet  of  things  monitoring
system, using BeagleBone Black Rev C model. It also acts as
a  decision  support  system  to  help  water  resources

management and mitigates the impact of agrochemicals. 

C.  Unmanned Aerial Systems
Remote  sensing  applications  in  agriculture  are  usually

grouped by sensor platform type, including satellite, aerial and
land-based  platforms  [60].  Unmanned  aerial  system  (UAS)
refers  to  the  unmanned  aircraft-unmanned  aerial  vehicle
(UAV)  and  its  associated  remote  control  equipment.
Compared  to  satellite  imagery,  images  acquired  by  the  UAS
generally have a higher temporal and spatial resolutions [61].
The use of these systems is growing rapidly across many civil
application  domains,  including  agriculture.  Its  application  in
agriculture  include,  but  are  not  limited  to,  fertilizer
management  [62],  hyper-spectral  imaging  [63],  yield
prediction and crop monitoring [64], weed detection [65], and
data  collection  from  various  sensor  types  [66]. Table III
presents a selection of different UAVs used for a wide range
of  agricultural  tasks.  While  there  are  different  types  and
shapes,  the  three  major  types  are:  Fixed  Wing  [42],  [45],
Hybrid  Fixed-Wing  [41],  [47],  and  Multi-Rotor  [43],  [44],
[46],  [48].  The main two missions  for  these  UAVs are  aerial
imagery  for  obtaining  field  data  [41],  [42],  [44],  [45],  [47],
and  liquids  spraying  for  irrigation  and  chemicals  spraying
actions  [46],  [48].  One  of  the  most  important  characteristics
used  for  UAVs  evaluation  is  the  wingspan  of  the  winged
UAVs; the payload, which is the weight each UAV can carry;
The  endurance,  to  know  how  long  the  UAV  can  fly;  the
coverage area,  to  make sure it  can cover  the whole field;  the
maximum speed; and finally, the cost. 

D.  Agricultural Robotics
The  use  of  agricultural  machinery  in  farming  increased

investment  and  research  thanks  to  the  use  of  robotic
technology in the development of machines and the execution
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Fig. 4.     The architecture of a typical IoT sensor node.
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of  tasks.  Numerous  agricultural  land-based  robots  are
available  to  perform  farming  operations  and  to  replace  or
extend human capabilities in certain tasks [67]. Such vehicles
have  four  main  capabilities  when  performing  agricultural
tasks:  detection,  guidance,  mapping,  and action [68].  Agricu-
ltural  robotics  research  covers  a  wide  range  of  applications,
from  automated  harvesting  [69],  weed  management  and
control  [70],  autonomous  spraying  for  pest  control  [71],
environmental conditions monitoring, and animals health [72],
helping  improve  operational  reliability  while  enhancing  soil
health and productivity.

1)  Autonomous  Tractors: Tractors  are  machines  used  to
carry out farming operations and to support other agricultural
machinery.  Self-driving  tractor  technology  can  meet  the
growing concern of work-labor force shortages, and will also
improve  performance  and  efficiency  without  requiring  a
human.  This  technology  will  permit  real  24/7  operations,
where  a  farmer  will  be  able  to  control  the  farm  from
anywhere, with just a smart device and internet access. 

III.  Network Layer

In  this  layer,  the  processed  data  from  the  physical  layer  is
received  and  forwarded  to  the  upper  layer.  It  also  passes

control commands from the application layer to the perception
layer.  This  layer  includes  relevant  communication  techno-
logies  from  different  transmission  ranges,  such  as  ZigBee,
Bluetooth,  Wi-Fi,  and  NFC  for  short-range;  LoRaWan,
SigFox, and NB-IoT for long-range; and 2G, 3G, 4G, and 5G
for  cellular. Table IV presents  a  summary  of  some  wireless
technologies  classified  by  transmission  ranges.  A  brief
description of each communication technology is given below.

1)  Wi-Fi: is  one  of  the  most  popular  radio  access
technologies  that  we  can  find  in  almost  all  handheld  devices
with networking capabilities. It is a collection of wireless local
area  network  (WLAN)  IEEE  802.11  standards,  operates  in
various  frequencies  from  2.4  GHz  to  60GHz,  and  provides
data  rates  from  1  Mb/s  to  6.75  Gb/s.  WiFi  provides  a
communication range up to 100 m [73].

2) ZigBee: is an IEEE 802.15.4 standard-based specification
used  to  create  wireless  personal  area  networks  with  low-
power, low-bandwidth requirements, designed for applications
in limited sized projects. It provides communication ranges up
to 20 m [73].

3)  Z-Wave: is  a  short-range  wireless  communication  tech-
nology  with  the  following  advantages:  low  cost,  low  battery
consumption,  and  high  reliability.  Its  primary  focus  is  to

 

TABLE III  
A Brief Comparison of Some UAVs That is Used in Smart Agriculture

Project Type WingSpan Payload Endurance Coverage Max. Speed Main Applications Cost

ALTI Reach [41] Hybrid Fixed-Wing 6 meters 7 Kg 20 hours 1800 Km 90 Km/h Aerial imagery $295K or $9.5/h

AgEagle RX-60 [42] Fixed-Wing 1.37 meters N/A 60 minutes 400 acres 42 m/h Aerial imagery $12K

M600 Pro [43] Multi-Rotor N/A 6 Kg 35 minutes 5 km 65 km/h Aerial Imaging $5,7K

Omni Ag [44] Multi-Rotor N/A 2 Kg 25 minutes 1.60 km 15 m/s Aerial imagery $17K

eBee SQ [45] Fixed-Wing 1.10 meters N/A 55 minutes 41 km 110 km/h Aerial imagery $25K

THEA 140 Pro [46] Multi-Rotor N/A 5 kg 5 hours 2 km 14 m/s Liquids Spraying $7.5K

ALTI Ascend [47] Hybrid Fixed-Wing 2 meters 600 g 6 hours 450 Km 75 Km/h Aerial imagery $35K or $3/h

Agras T16 [48] Multi-Rotor N/A 16 kg 18 minutes 0.1 km 7 m/s Liquids Spraying $16K or $3/h
 

 

TABLE IV  
Wireless Technologies for Agricultural IoT

Range Technology Standard Frequency Data rate Power Max. range Security

NFC ISO/IEC 13157 13.56 MHz 106 kbps–424kbps 1–2 mW 0.1 m N/A

RFID Numerous standards 13.56 MHz 423 Kbps 1 mW 1 m N/A

Zigbee IEEE 802.15.4 2.4 GHz 250 Kbps 1 mW 20 m AES-128 Bit

Z-Wave Z-Wave 908.42 MHz 100 Kbps 1 mW 30 m Security 2 (S2)

Short range Wi-Fi IEEE802.11 a/c/b/d/g/n 2.4 GHz–60 GHz 1.2 Mbps–6.75 Gbps 1 W 100 m WEP/WPA/WPA2

Bluetooth 802.15.1 2.45 GHz 1–3 Mbps 1 W 100 m AES 56/128 bit

Bluetooth LE Bluetooth smart 2.4 GHz 1 Mbps 10–500 mW 100 m AES-128 bit

6LowPAN IEEE 802.15.4 908.42 MHz–2.4 GHz 20 Kbps–250 Kbps 1 mW 100 m AES-128 Bit

LoRaWAN LoRaWAN Many 0.3–50 Kbps Very low 10 Km AES-128 bit

Long range SigFox SigFox 908.42 MHz 10–1000 bps Very low 50 Km AES-128 bit

NB-loT 3GPP 180 KHz 200 Kb/s Very low 15 Km LTE encryption

2G GSM 850–1900 MHz 171–384 Kbps 1 W–3 W 26 Km GEA2,3,4/A5/3,4

3G UMTS 850–1900 MHz 40 0.73–56 Mbps 1 W–4 W 26 Km USIM

Cellular area 4G LTE 700–2600 MHz 0.1–1 Gbps 1 W–5 W 28 Km SNOW 3G

5G ITU IMT-2020 700 MHz–72 GHz 20 Gbps 1 W–5 W 28 Km 256-bit
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ensure  transmission  reliability.  It  is  suitable  for  limited
network  bandwidths  and  provides  data  rates  up  to  100  kbit/s
[74].

4)  Bluetooth: is  an IEEE 802.15.1 compliant  standard,  that
provides  a  cost-effective  and  low-power  wireless  communi-
cation  technology  adapted  to  the  transmission  of  data  over  a
short  distance.  The  extremely  energy-efficient  and  cost-
effective  version  of  this  standard  is  called  bluetooth  low
energy (BLE or Bluetooth Smart). BLE joined with Bluetooth
v4.0 [75].

5)  6LowPAN: is  a  shorthand  for  IPv6  over  low  power
wireless personal area networks (6LoWPAN) [76]. It is based
on the IEEE 802.15.4 standard and developed by the internet
engineering task force (IETF). 6LoWPAN allows devices with
limited resources to send data over IPv6.

6) NFC: Near-field communication is a near-range wireless
technology that uses RFID tags and readers [77]. It operates at
13.56 MHz with data  rates  ranging from 106 to 424 kbps.  A
separation  of  10  cm  or  less  is  required.  It  uses  low  power
consumption.

7) Cellular Technologies: 3rd generation partnership project
(3GPP) is wide area network (WAN) technologies from global
standard  for  mobile  communication  (GSM),  Wide-band code
division  multiple  access  (WCDMA),  long-term  evolution
(LTE)  to  5G.  It  runs  on  a  licensed  frequency  and  focuses
mainly on high-quality cellular services. IoT devices based on
these technologies can connect across mobile networks [78].

● 5G  technology: is  expected  to  provide  high  data  rates,
reliability for errors, delay reduction, higher energy efficiency,
and  lower  latency,  essential  features  for  smart  agricultural
applications.  With  enhanced  mobile  broad-band  (eMBB)
functionality,  for  enhancing  mobile  data  rate  providing  up  to
20  Gbps  of  data  throughput,  machine-type  communications
(MTC)  for  long-range,  low  data  rate  capabilities,  and  ultra-
reliable  low  latency  communication  (URLLC)  for  ultra-
reactive connections offering air interface latency of less than
1 ms [79], and many other benefits that smart agriculture will
take  advantages  from,  including  the  motivation  for  a  new
design  of  agricultural  devices  and  machinery  since  data
gathering and network bandwidth are no longer problem. This
will, for instance, will completely free the robots from manual
or  in-field  control,  allowing  them  to  support  innovative
farming techniques. 

A.  Low-Power Wide-Area Network Technologies (LPWAN)
The  success  of  LPWAN  communications  technologies

resides  in  their  capacity  to  provide  a  low  power  connection
between  a  large  group  of  devices  over  large  geographical
areas at a very low cost.

1) SigFox: is  an LPWAN network operator  that  provides a
complete  IoT  connectivity  solution  based  on  its  proprietary
technologies  [80].  Using  an  IP  network,  Sigfox  deploys  and
connects  its  exclusive  base  stations  to  end  devices.  Sigfox
makes efficient use of the bandwidth and operates at minimal
noise  levels,  resulting  in  ultra-low battery  power  usage,  high
receptor sensitivity, and cheap hardware devices [81].

2)  LoRaWan: Low  Power  Wide  Area  Networks  is  a  long-
range communication protocol developed by LoRaTM [82]. Its

main objective  is  to  ensure  interoperability  between different
operators  and  to  enable  IoT.  It  provides  long-distance
transmissions  over  10  km  in  rural  areas  with  low  energy
usage.

3)  NB-IoT: Narrowband  Internet  of  Things  is  a  3GPP
cellular technology. It meets the significant needs of IoT, such
as  wide  geographical  coverage,  scalability,  low-cost,  support
for  a  large  number  of  devices,  and  long  battery  life  while
offering up to 10 years of life-time [81]. 

IV.  Middleware Layer

The  middleware  layer  abstracts  system  or  hardware
complexities  to  facilitate  the  development  of  numerous  IoT
applications  and  services  [83].  It  is  generally  regarded  as  a
software  system  built  to  serve  as  an  interface  between  IoT
devices  and  applications  [84].  Many  designs  approach  for
middleware  solutions  exists  [83],  including  application-
specific,  event-driven,  tuple-spaces,  cloud-based,  agent-
driven,  virtual  machine-based,  database-oriented,  service-
oriented,  and  others.  Symeonaki et  al. [85]  simplified  the
process of managing, manipulating, and exchanging the large
amount of diverse data generated in many different  precision
agriculture  systems  by  implementing  a  cloud-based  and
contextual  middleware  as  a  framework  for  an  embedded,
reactive, scalable, and service-oriented IoT system. According
to the authors, context-based middleware is one of the leading
research  targets  under  the  Agriculture  4.0  approach.  The
framework  introduced  in  their  paper,  which  is  based  on  the
integration of WSANs into IoT, offers the advantage of being
easily  adaptable,  modifiable,  and  extensible  for  any  appli-
cation  in  any  precision  agriculture  system  environment,
regardless  of  its  complexity.  Fortino et  al. [20]  developed an
IoT project  that  provides an effective model for agent design
and  programming,  as  well  as  efficient  tools  for  the
construction of an effective IoT system based on a multi-agent
system.  The  proposed  agent-based  approach  is  specifically
based on the agent-based cooperating smart  object  (ACOSO)
methodology,  and  the  corresponding  middleware.  Dobrescu
et  al. [86]  developed  a  context-aware  IoT-based  smart
platform  for  agricultural  monitoring  and  control.  It  can  be
considered  as  middleware  support,  which  allows  the  transfer
of  environmental  information  and  commands  from  field  to
cloud for interpretation and decision. 

A.   IoT-Based  Middleware  Platforms  for  Agricultural
Applications

Different  IoT  middleware  platforms  are  used  for  the
development  of  agricultural  applications,  in  which  the
separate middleware solutions focus on particular parts of the
IoT  such  as  service  discovery,  security,  scalability,  interop-
erability,  portability,  and  context  awareness,  as  shown  in
Table V.

1)  LinkSmart: Previously  known  as  HYDRA,  is  a  funded
European  Union  project  to  develop  service-oriented  middl-
eware for IoT and Embedded systems [92]. Its primary focus
involved  the  integration  and  management  of  heterogeneous
hardware  devices  into  applications  in  a  distributed  archit-
ecture,  regardless  of  their  network  technologies  [84].  Furdik
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et  al. presented  an  IoT-enabled  meat  traceability  prototype,
implemented using the LinkSmart middleware. It gathers real-
world data from selected farms in Denmark [87].

2) Global Sensor Networks (GSN): is an open-source sensor
middleware  platform  designed  to  facilitate  the  deployment
and  programming  of  sensor  networks  [93].  It  provides  a
scalable  framework  for  integrating  heterogeneous  and  distri-
buted  sensor  network  technologies  using  a  few  powerful
abstractions.  Gaire et  al. [88]  illustrated  how  GSN  could  be
used to extend and enable the integration of IoT with external
data, and to provide monitoring conditions and measurements
to implement a smart farm prototype of 269-hectare livestock
property located in Armidale.

3)  Node-RED: is  an  open-source  IoT-based  middleware
platform developed by IBM. It  is  based on node.js,  a  server-
side  javascript  platform  [94].  Node-RED  uses  a  visual  tool
that  simplifies  the  job  of  representing  IoT  devices  for
abstraction  purposes  [84].  Kousiouris et  al. presented  the
architecture and implementation of a micro-service system for
supply  chain  management  and  its  dependencies.  The  authors
used  Node-RED  to  permit  smooth  coordination  between
various  and  complex  systems,  enabling  the  adaptability  of
information  and  the  creation  of  workflows  for  the  necessary
sequences of actions [89].

4)  FIWARE: is  an  open-source  platform  for  context  data
management  that  ease  the  development  of  solutions  such  as
smart agriculture [95]. It provides Advanced Middleware that
allows  smooth,  effective,  expandable,  and  secure  inter-
communication  between  distributed  applications  and  the
FIWARE platform. Muñoz et al. [90] developed and tested a
smart  water  management  system  based  on  the  FIWARE
middleware.  The  system  showed  good  results  in  saving
operating costs.

5)  OpenIoT: is  an  open-source  cloud-based,  middleware
platform  that  enables  the  semantic  interoperability  of  IoT
services  [96].  Data  from many heterogeneous sources  can be
shared  across  the  domain.  Jayaraman et  al. [91]  proposed  a
solution  based  on  OpenIoT  to  address  the  data  processing
needs of smart agriculture in Australia and demonstrates how
agriculture can benefit from IoT. 

V.  Service Layer

In this layer, various services such as cloud computing, fog
computing,  AI,  SDN/NFV,  and big  data  are  provided for  the
application  layer,  which  enable  agricultural  applications
to perform a wide range of smart management actions. Table VI

presents  a  comparison  of  different  open-source,  IoT-based
platforms that are used in intelligent agricultural applications. 

A.  Cloud Computing
IoT can take advantage of the benefits of the cloud features

and  resources  to  overcome  its  limitations  such  as  storage,
processing,  and  communication  [97].  Using  cloud  and  IoT
together  will  facilitate  the  implementation  of  a  high-speed
information  system,  between  the  surveillance  entity  and  the
sensors/actuators  deployed  in  the  area  [97].  IoT  along  with
cloud computing, has become a technology of the future, and
their  applications  have  been  used  in  many  sectors,  including
agriculture.  Ghahramani et  al. [21]  reviewed and categorized
cloud  QoS  technical  details,  resulting  in  better  insights  into
the different aspects of QoS frameworks. CLAY-MIST [98] is
a  cloud-based  solution  that  can  effectively  monitor  comfort
levels  of  specific  crops  that  could be an extremely exact  and
efficient  decision  support  tool  for  farmers,  with  a  declared
precision  of  94%.  Agri-Info  [99]  is  a  system  that  offers
information  about  agriculture  as  a  service,  using  cloud
computing and IoT.  It  processes various types of  agricultural
data  gathered  from multiple  users  through IoT devices  based
on  different  areas.  Also,  the  system  provides  the  necessary
information to users, and automatically establishes a diagnosis
of the agricultural situation. The authors developed a web and
mobile application. Results indicated a reduction of 12.46% in
cost,  15.52% on  network  bandwidth,  10.18% in  execution
time, and 13.32% in latency. 

B.  Fog/Edge Computing
Fog/Edge  is  a  high  virtualization  platform  that  provides

traditional cloud computing services between end devices and
cloud computing data  centers,  usually  located on the edge of
the  network  [100].  That  means,  instead  of  performing  all
processing at the cloud center, fog computing can complete a
part  of  it  at  the  edge  of  the  network  with  any  device  with
storage,  computing,  and  network  connectivity,  which  collect
data from the IoT devices related to the IoT application [29],
as  shown  in Fig. 5.  Because  of  its  characteristics,  such  as
proximity,  location  awareness,  geographical  spread,  and
hierarchical  organizations,  it  is  a  perfect  platform  to  support
low-energy  WSNs  [100].  In  recent  years,  cloud-based
applications  for  intelligent  irrigation  have  been  widely  used.
However,  there  are  challenges  related  to  network  traffic,
security, and legal challenges. Zamora-Izquierdo et al. built a
flexible  edge-based  IoT platform for  supporting  the  needs  of

 

TABLE V  
Middleware platforms for smart agriculture

Middleware Type SD S/P S I P CA OS UL

LinkSmart Service-based √ √ ◑ ◑ √ √ √ [87]

GSN Service-based √ √ ◑ × √ × √ [88]

Node-RED Actor-based √ √ √ ◑ √ √ √ [89]
FIWARE Service-based √ √ √ √ √ √ √ [90]

OpenIoT Cloud-based √ √ √ √ √ √ √ [91]

(√): Supported; (◑): Partially supported; (×): Unsupported. Service discovery (SD); Security/Privacy (S/P); Scalability (S); Inter-operability (I); Portability
(P); Context aware (CA); Open source (OS); Used in literature (UL)
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soil-less  culture  greenhouses,  with  low-cost  hardware.  The
whole system is implemented in a real  greenhouse located in
Spain.  The  project  is  a  three-layer  edge-based  system  [101].
Chen presented an intelligent cyber physical system approach
to  food  traceability,  using  a  fog  computing  architecture.
Results showed that the system is effective [102]. 

C.  Big Data
Since  the  IoT  connects  all  types  of  objects  and  devices  in

both agriculture and the supply chain, huge amounts of data is
collected  from  a  wide  range  of  sources  including  sensors,
UAVs,  agricultural  mobile  crowd  sensing  (AMCS)  [40],  etc.
These data can be processed, analyzed, and used for decision
making in real-time [8]. Data analysis is a critical enabler for
successfully  creating  value  from  these  data,  and  addressing
issues such as food security and sustainability [25]. Chen et al.
used  big  data  through  an  IoT  framework  for  the  effective
functioning of the agro-economic farm model.  It  was used to
analyze  a  sample  of  data  from  ten  different  sensor  nodes  on
yield production, with the shortest  possible computation time
and  the  maximum  accuracy.  Results  indicated  a  nearly  34%
reduction in memory utilization [103].

1) Big Data Analytics: is the complex process of analyzing
big  data  sets  to  reveal  useful  information  that  can  help  to
make  informed  decisions.  Muangprathub et  al. [36]  introdu-
ced a system for monitoring environmental parameters in crop
fields.  The  system  is  designed  to  connect  to  any  agricultural
field,  and  to  receive  information  from  the  IoT,  and  to
manipulate crop data details and field information. Data from
the IoT are stored and used in data analysis by applying data
mining  to  find  useful  information  about  the  impacts  of  the
environment.  Findings  showed  that  vegetables  cultivated  in
the  country  had  a  temperature  adapted  to  high  productivity,
ranging  from  29°C  to  32°C.  Also,  suitable  humidity  for  the
high  productivity  of  lemons  was  between  72% and  81%.
Tseng et  al. [104]  introduced  and  Intelligent  Agriculture  IoT
system  for  surveillance  of  environmental  factors  on  a  farm.
The  data  collected  was  analyzed  in  3D  cluster  analysis.  The
results  validate  that  the  system  is  feasible.  Lambrinos  [105]
developed a decision support system for intelligent agriculture
that uses data from several sensors obtained via a LoRaWAN
network, as well as meteorological data and crop information,

to make informed decisions.
2) Predictive Analysis: is a branch of data analysis that aims

to  provide  predictions  about  future  outcomes  using  historical
data  and  analytical  techniques,  such  as  statistical  modeling
and  AI.  AgriPrediction  [106]  is  a  framework  based  on  both
LoRa IoT technology and a prediction engine that anticipates
potential  crop  malfunctions  proactively  to  inform  the  farmer
of potential solutions as quickly as possible. Gains of 17.94%
were  achieved  in  terms  of  leaf  development  and  14.29% in
terms of weight compared to a standard cultivation procedure.
In  [107],  the  authors  proposed  a  granular  AI-based  predictor
for agricultural cyber physical system (CPSs) with large-scale
data.  Results  showed  that  computation  efficiency  is
significantly  reduced  while  maintaining  an  equivalent
prediction  accuracy.  Diedrichs et  al. [108]  established  a
prediction engine as part of an IoT-compatible frost prediction
system that gathers environmental data to predict frost events.
The  authors’ evaluation  of  their  algorithm  involved  training
regression and classification patterns, using multiple machine
learning algorithms.

3) Visualization: is  an essential  aid in gaining an overview
of research data-sets. The analysis of numerical data, in many
cases,  provides  too  little  information.  Visualization  offers  an
excellent  first  impression  of  the  results,  enabling  the  user  to
study exciting trends in the data, verify the correctness of the
results, and display them in an intelligible manner. 

D.  Artificial Intelligence
AI  technology  assists  different  sectors  to  improve  their

efficiency  and  profitability,  including  agriculture.  There  are
problem  areas  in  agriculture,  such  as  crop  diseases,  poor
storage  control,  pesticide  management,  weed  problems,  and
water management, all of which can be addressed by AI [109].
Garibaldi  introduced  a  framework  of  indistinguishable
concepts to be used as the main element in the assessment of
automated  decision-support  systems  [22].  Ghahramani et  al.
[23] provided a detailed analysis of intelligent semiconductor
manufacturing based on computational scalability, and neural
network  algorithms.  The  authors  proposed  a  dynamic  algor-
ithm  to  get  valuable  information  on  semiconductor  manufa-
cturing  processes  and  to  address  a  variety  of  challenges.
Rajput  and  Kumaravelu  [110]  proposed  a  fuzzy  logic-based
distributed  clustering  protocol  for  wireless  intelligent  sensor
networks  (WSSNs)  that  is  used  in  agricultural  monitoring
systems.  Their  main goal  is  to improve the energy efficiency
of  WSSNs  while  maximizing  the  coverage  area.  The  results
indicated  that  the  proposed  protocol  balances  energy  use
between nodes in an efficient manner.

1)  Deep  Learning  (DL): has  shown  great  potential  and
promising results,  and as  it  is  successfully  applied in  various
fields,  it  is  also  used  in  agriculture  [121].  PestNet  [122]  is  a
deep learning approach for the discovery and categorization of
widespread  and  multi-class  pests.  It  has  been  evaluated  on  a
set  of  pest  image  data  collected  by  task-specific  image
acquisition equipment. Experimental results showed a 75.46%
mean average precision (mAP). Bu and Wang [123] presented
a smart farming system based on deep reinforcement learning,
to make intelligent decisions such as smart water management
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and to adjust the environment for crop growth. Vincent et al.
[124]  proposed  an  expert  system  to  assist  farmers  in
evaluating  agricultural  land  for  cultivation,  based  on  the
integration  of  data  collected  by  the  various  sensors,  with  AI
systems  such  as  neural  networks  and  multilayer  perceptron
(MLP),  for  the  evaluation  of  the  suitability  of  agricultural
land. The study presented a model which is reported to be as
accurate  as  99%.  Jiang et  al. [125]  proposed  the  real-time
detection  of  apple  leaf  diseases,  based  on  improved
convolutional  neural  networks  (CNNs),  a  deep  learning
approach. The experimental  results showed that the proposed
model  realizes  a  detection  performance  of  78.80% mAP.
Ashqar et  al. presented  a  plant  seedling  classification
approach based on CNN, with a dataset containing about 5000
images  with  960  unique  plants  belonging  to  12  species.  The
model achieved an accuracy of 99.48% [126]. 

E.  SDN and NFV Technologies
The  rapid  growth  of  smartphones,  virtualization,  and

widespread  use  of  cloud  computing  services  are  some of  the
key  drivers  behind  new  trends  in  the  networking  business,
which  is  pushing  conventional  network  architectures  to  be
reconsidered.  SDN  attempts  to  decouple  the  network  control
functionality  (the  control  plane),  from  the  transmission
functionality  (the  data  plane)  of  the  network  [127].  On  the
other hand, NFV aims to abstract network transfer and related
network function from the hardware on which it operates, and
it  creates  a  virtual  network  overlay  using  software  that
performs  similar  path  control  functions  of  SDN  [128].  SDN
and  NFV  are  closely  related  and  highly  complementary  to
each  other  and  both  rely  extensively  on  virtualization
technology,  to  allow  the  network  design  and  structure  to  be
abstracted  into  software  and  subsequently  implemented  by
underlying software on hardware platforms and devices [128].
It  is also possible to combine both SDN and NFV to provide
the  benefits  of  both  architectures  to  improve  infrastructure
flexibility,  facilitating  the  design,  delivery,  and  operation  of
network  services  dynamically  and  adaptively,  which  is

necessary  for  IoT  services.  Huang et  al. [129]  proposed  an
architecture  of  vehicle  sensor  networks  based  on  SDN,  as  a
means  of  reducing  the  impact  of  controller  failure  and
improving  the  stability  and  the  operability  of  vehicle  sensor
networks  in  agriculture.  They  showed  that  the  recovery  time
in  case  of  loss  of  controller  connection  is  less  than  100  ms,
with  rule  updates  in  real-time  and  at  a  constant  throughput
rate.  In [130],  the authors proposed an approach based on an
Open  vSwitch  extension,  for  multi-domain  SDNs  for
agricultural  WSNs.  The  results  showed  that  each  sensor
switches  having  a  short  failure  recovery  time,  less  than  300
ms, with low packet loss.

Different SDN/NFV frameworks are compared in Table VII.
Framework type indicates whether the platform support SDN
only [114]–[119], NFV only [112], [120] or both [111], [113].
5G  connectivity,  quality  of  experience  (QoE)  /  quality  of
service  (QoS),  and  load  balancing  support  are  of  great
importance  these  days,  especially  for  real-time,  massive-data
IoT-based applications since they deliver better services to the
networking  module.  While  some  platforms  support  those
metrics  [111]–[114],  others  do  not  [115],  [117].  Scalability,
elasticity, and stability metrics are used to evaluate the ability
of  dynamic  and  continuous  adaptability  of  these  platforms,
facing  different  scenarios.  The  security  metric  indicates
whether  the  platform  can  deliver  security  policies  (CIA):
confidentiality,  integrity,  and  availability.  According  to  our
compression, ONOS [111], Open NFV [112], Open Day Light
[113],  and  Tungsten  [114]  are  from  the  best  available
SDN/NFV frameworks.

1)  SDN/NFV Architecture  for  Smart  Agriculture: The  IoT-
based  SDN/NFV  system  for  agricultural  applications  is
illustrated in Fig. 6. In this figure, we can visualize four layers
with  different  services.  The  first  layer  consists  of  the
perception  layer  which  is  composed  of  various  agricultural
IoT-based  networks.  The  data  plane  is  made  up  of  network
components  such  as  switches  and  routers  dedicated  to  the
routing  of  packets.  Yet,  unlike  conventional  networks,  they
are merely routing components without integrated intelligence

 

TABLE VI  
A Brief Comparison of Some Open-Source IoT Platforms for Smart Agriculture

Device-related Service-related Error-related Application-related

Frameworks Device
management

Scala-
bility Fog AI Analytics Visualiz-

ation
Error

management
Fault

tolerance WorkFlow Events
processing

Business
rules

FIWARE [95] √ √ √ √ √ √ √ √ √ √ √
ThingsBoard

[131] √ √ √ √ √ √ √ √ √ √ √

Thinger.io [132] √ √ × √ √ √ ◑ × √ √ ◑

Murano [133] √ √ × √ √ √ √ ◑ √ √ √

ThingSpeak [134] √ √ × √ √ √ ◑ × √ √ ×

MainFlux [135] √ √ √ √ √ √ ◑ ◑ √ √ ×

Iotivity [136] √ √ × × ◑ ◑ ◑ ◑ √ √ ×

KAA [137] √ × √ × √ √ √ √ √ √ ◑

WSO2 [138] √ √ √ √ √ √ ◑ ◑ √ √ √

SiteWhere [139] √ √ × √ √ √ ◑ ◑ √ √ √

DeviceHive [140] √ √ × √ √ √ ◑ ◑ √ √ ◑

(√): Supported; (◑): Partially supported; (×): Unsupported.
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for  autonomous  decision  making  [141].  The  packet
forwarding  logic  is  defined  by  the  SDN  controller  and  is
enforced  in  the  forwarding  devices  through  transmission
tables  [128].  The  southbound  interface  is  among  the  most
important  components  of  an  SDN/NFV  system,  providing  a
connector  between  the  forwarding  devices  and  the  SDN
controller.  Currently,  OpenFlow  is  the  most  widely  accepted
standard [141]. The NFV platform relies on backbone servers
to  implement  low-cost  networking  functions.  Servers  have
hypervisors  running  to  support  virtual  machines  that
implement  network  functions.  It  allows  programmable  and
personalized data processing functions that run as software in
VMS,  where  NFs  are  shipped  to  operators  just  as  software
[128].  The  SDN  controller,  together  with  the  NFV  orchestr-
ation system, forms the logic control  module.  Being the core
of  the  SDN,  it  consists  of  a  centrally  located  controller,  that
logically  manages  the  network,  takes  application  layer
requests,  and  manages  the  network  devices  via  standard

protocols  [128].  SDN  controller  produces  network  configur-
ations  according  to  the  policies  specified  by  the  network
administrator.  The  northbound  interface  offers  a  shared
interface  for  application  development  [141].  The  application
layer covers an array of applications for agricultural services,
and  they  are  mainly  software  applications  communicating
with the control layer. 

F.  Open Source Platforms
As  a  cluster  of  technologies,  IoT  platform  provides  the

essential  elements  for  IoT-based  applications  development
[95]. It offers the foundations for creating specific features of
your  solution  [131].  In Table VI we  compare  a  selection  of
open-source  IoT platforms for  smart  agricultural  applications
based  on  four  criteria:  device-related,  service-related,  error-
related,  and  application-related.  For  the  first  criteria,  device
management  provides  centralized  management  and  real-time
status  reports  for  all  existing  physical/virtual  devices  [132],
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[133].  Scalability  is  the  key feature  that  allows a  platform to
support  a  growing  amount  of  tasks  [135],  [136].  Service-
Related  features  includes  service  layer  technologies,  like  fog
[137],  [138],  AI  [139],  [140],  analytics  [133],  [134],  and
visualization  [95],  [131].  Error-related  features  report  the
ability of the platform for handling errors, which is evaluated
by error management and fault tolerance metrics. Application-
Related  is  the  services  that  a  platform  can  provide  to  IoT-
based applications, including workflow, event processing, and
business  rules  [95],  [138],  [139].  From  the  previous
comparison  we conclude  that  FIWARE [95]  and  ThinsBoard
[131] are among the best open-source IoT platforms for smart
agriculture. 

VI.  Application Layer

Numerous applications have been developed in this layer to
monitor  and  control  plants  and  animals,  to  warn  of  and
manage diseases and pests, and to track the food supply chain,
which  can  improve  productivity,  reduce  waste  and  pollution
of primary resources, and also save time and money. Table VIII
summarizes  critical  technologies  used  in  each  layer  for
various  selected  projects,  as  well  as  the  contribution,  results,
and  limitations.  The  classification  of  IoT-based  applications,
together  with  their  sub-classes,  is  graphically  illustrated  in
Fig. 7. This classification is supported by an extensive review
of  IoT  solutions,  currently  available  for  smart  agriculture.  A
detailed discussion is given below. 

A.  Application Protocols
IoT-based agricultural applications use several protocols for

the exchange of data. The most common types of application
protocols  are  HTTP,  CoAP,  MQTT,  XMPP,  AMQP,  and
DDS.

1) Hypertext Transfer Protocol (HTTP): is the foundation of
data communication for the world wide web (WWW). It is the
most  commonly  used  application  layer  protocol  when

developing  web  applications  due  to  its  relevance  in  serving
hypermedia resources that satisfies the most essential needs on
the internet.

2)  Constrained  Application  Protocol  (CoAP): is  an  IoT-
based  application  layer  protocol  created  by  the  IETF
constrained  restful  environments  (CoRE)  working  group
[230].  It  provides  a  representational  state  transfer  (REST)
based  web  transfer  protocol  in  addition  to  the  HTTP
functionalities.  The  CoAP  uses  UDP,  which  makes  it  more
efficient for IoT applications. It alters some HTTP features to
suit  IoT  demands  and  deals  with  lost  and  noisy  links.  It
enables  tiny  and  low-powered  devices  with  computing  and
communicate  capabilities  to  benefits  from  the  RESTful
interactions [28].

3) Message Queue Telemetry Transport (MQTT): is  a light
and  very  simple  publish/subscribe  messaging  protocol
developed for unreliable networks with higher latency or low
bandwidth.  It  is  designed  to  ensure  that  network  bandwidth
and device resource requirements are minimized, while trying
to  guarantee  reliability  and  a  degree  of  assurance  in  the
delivery.  These  principles  make  the  protocol  perfect  for
machine to machine (M2M) or IoT connected devices, as well
as  for  mobile  applications,  that  require  high  bandwidth  and
battery power [28].

4) Extensible Messaging and Presence Protocol (XMPP): is
an application layer  protocol  based on the extensible  markup
language (XML), which allows the exchange of real-time data
between  network  entities,  in  a  structured  but  extensible  way.
XMPP permits instant communication between multiple users
over the internet, while ensuring end-to-end encryption [28].

5)  Advanced  Message  Queuing  Protocol  (AMQP): is  an
open  standard  IoT-based  application  layer  protocol  for
message-oriented applications. AMQP standardizes messaging
using  producers,  brokers,  consumers,  and  messaging.  AMQP
uses  TCP to  exchange messages.  Two main components  that
handle  communications  are:  exchanges  and  message  queues.

 

TABLE VII  
A Brief Comparison of Some SDN/NFV Frameworks for Smart Agriculture

Type Networking Adaptability Security OpenFlow Programming L.

Frameworks QoS/QoE 5G Load
balancing Scalability Elasticity Stability C I A

ONOS [111] SDN/NFV √ √ √ √ √ √ √ √ √ √ Java
Open

NFV [112] NFV √ √ √ √ √ √ √ √ √ √ Java,
Python

Open-
Daylight [113]

SDN/NFV √ √ √ √ √ √ √ √ √ √ Java

Tungsten
Fabric [114]

SDN √ √ √ √ √ √ √ √ √ √ Python

NOX/POX
[115]

SDN ◑ × × × ◑ ◑ ◑ ◑ ◑ √ Python, C

RYU [116] SDN √ √ × √ ◑ ◑ ◑ ◑ ◑ √ Python
Floodlight

[117] SDN ◑ × × ◑ ◑ ◑ √ √ √ √ Java

lighty.io [118] SDN ◑ √ × √ ◑ ◑ ◑ ◑ ◑ √ Java,
Python, Go

Cherry [119] SDN ◑ × × ◑ × × × × × √ Go
Open

Baton [120] NFV √ √ × √ √ ◑ √ √ √ √
Java,

Python, Go

(√): Supported; (◑): Partially supported; (×): Unsupported; Confidentiality (C); Integrity (I); Availability (A).
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TABLE VIII  
IoT Applications for Smart Agriculture

Year Work Main
contribution Phy. layer Net. layer Mid. layer Serv. layer App. layer

Performance (+)
Limitation (–)

2020 Popescu
et al. [157]

Advanced
UAV–WSN
system for
intelligent
agricultural
monitoring

- Soil and Weather
related sensors
- Satellite

- 6LoWPAN,
ZigBee
- LoRaWAN,
GSM
- BLE, Wi-Fi

N/A
- Edge/Fog
computing
- Cloud
computing

- User server
for data
interpretation

(+) Design of optimized
trajectories that allows
efficient use of limited
ground sensor network
resources
(–) Increased complexity
for multilevel data
processing

2020 Hang
et al. [207]

Blockchain-
based fish farm
platform

- Temperature,
water level, O2
sensor, PH
- Water pump,
pond heater, fish
feeder

- LoRaWAN,
ZigBee, Z-
Wave,
Bluetooth, Wi-
Fi

N/A
- Cloud
computing
- Fog
computing

- Blockchain
- HTTP
- Web
application

(+) Scalability, high
throughput, off-chain
storage, and privacy
(–) Application too
complex for ordinary
farmers

2020 Zhao
et al. [190]

Automatic
crop disease
recognition
system

- Weather related
sensors
- Cameras

- N/A - N/A
- AI
- Big data
analytics

- Application
for the
visualization of
crop disease
identified

(+) Identification
accuracy of 97.5%
(–) Unbalanced data
structure has not been
well solved

2020 Muñoz
et al. [90]

IoT
architecture for
water resource
management in
agro-industrial
environments

- Variety of sensor
and actuator
technologies for
soil, plant, and
weather activities

- 2G, 3G FIWARE
middleware

- Cloud
computing

- CoAP &
MQTT
- HTTP
- Web-based
application.

(+) 75% of the
operational cost could be
saved.
(–) The speed of
computing and latency
could be better on edge
computing approach

2019 Kamienski
et al. [165]

IoT-based
smart water
management
platform

- Variety of
commercial sensor
and actuator
technologies for
soil, plant, and
weather
- UAV

- LoRaWan
- Wi-Fi
- 2G, 3G, 4G

FIWARE
middleware

- Cloud
computing
- Fog
computing
- Big data
analytics
- AI

- MQTT
- Web
application

(+) Real-time responses
for adapting irrigation
(–) Savings in
consumption are not
analyzed compared to
Zamora-Izquierdo et al.
[101]

2019
Zamora-
Izquierdo
et al. [101]

Smart farming
platform

- Sensors: light,
humidity,
temperature, CO2,
PH.
- Actuators: soil
and water nutrition
pumps, valves

- 6LowPAN
- Serial/direct
digital/
analogue I/O
connections

FIWARE
middleware

- Cloud
computing
- Fog
computing
- Big data
analytics

- MQTT,
CoAP
- Greenhouse
control Web
service

(+) Savings of more than
30% in water
consumption and up to
80% in some nutrients
(–) Real-time responses
are not considered

2019 Kousiouris
et al. [89]

Smart
microservice
IoT-based
supply chain
management
system

- N/A - N/A Node-RED - AI
- HTTP
- Web-based
microservice

(+) Reduced overall
spin-up time
(–) Did not discuss
security and privacy

2020 Alonso
et al. [150]

Smart edge-
IoT based
platform for
livestock and
crops
monitoring

- RFID
- Sensors: weather,
soil, livestock, and
transport sensors

- SigFox,
LoRa, ZigBee,
Bluetooth, Wi-
Fi, 3G, and
others

FIWARE
middleware

- Edge
computing
- Cloud
computin
- AI
- Big data
analytics

- Blockchain
- Web
application

(+) The introduction of
edge nodes improves the
reliability of
communications and
reduced the costs
(–) Consumers cannot
access and analyze all
the data in the system

2018 Goap
et al. [170]

IoT based
smart irrigation
management
system

- WSN
- Sensors: soil
moisture and
temperature,
precipitation, air
temperature, light
radiation, humidity
- Actuators: water
pump

- Wi-Fi,
ZigBee
- Mobile data
connection

N/A
- Cloud
computing
-AI

- Web-based
interface for
real-time
monitoring
- HTTP REST
API

(+) The system is cost
effective, as it is based
on the open standard
technologies
(–) Water saving
analysis is not provided

2018 Rao and
Sridhar [171]

Crop-field
monitoring and
automation
irrigation
system

- Sensors: soil
moisture,
temperature
- Actuators: relay,
beeper

- 4G N/A - Cloud
computing

- Web-based
application

(+) Low-cost
implementation
(–) Very basic compared
to Kamienski et al. [165]

2018 Yoon
et al. [227]

Smart farming
system

- Sensors:
temperature,
humidity, and CO2

- LPWAN,
Bluetooth
- RS-485

N/A N/A
- MQTT
- MQTT broker
server

(+) Data can be trans-
received at 500 m
(–) Service layer (Cloud,
AI, etc.) is not present

 732 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 4, APRIL 2021



It  and  also  support  the  publish/subscribe  communications
model [28].

6) Data Distribution Service (DDS): was developed by the
object  management  group  (OMG)  for  real-time  M2M
communications using a publish/subscribe approach. It is built
on  a  broker-less  infrastructure,  and  utilizes  multi-casting  to
provide  excellent  QoS  with  reliability.  In  contrast  to  other
publish-subscribe  protocols,  it  is  ideally  suited  to  meet  the
real-time needs of IoT and M2M communications [28]. 

B.  Smart Monitoring
Smart IoT-based monitoring systems help maintain optimal

conditions to ensure better Agricultural Products quality. The
past few years have witnessed an increase in the development
of monitoring systems.

1)  Crop  Monitoring: crop  growth  and  production  perfor-
mance  monitoring,  throughout  the  stages  of  development,  is
an  essential  aspect  of  farm  management.  Triantafyllou et  al.
[143]  provided  structural  components  of  an  intelligent
agricultural  monitoring  system,  building  on  IoT  communic-
ation  technologies  and  WSN  features  in  cooperation  with
energy-saving  protocols.  The  project  is  illustrated  by  a

practical  application  for  monitoring  saffron  agriculture  in
Kozani,  Greece.  The  mySense  environment  is  designed  to
provide  a  systematic  approach  to  data  acquisition  processes
[144]. It is built on a 4-layer technological structure, including
sensor  nodes,  networks,  cloud  services,  and  support  for  end-
user  software  applications.  It  allows  the  use  of  inexpensive,
quickly  deployable,  seamless,  and  integrated  technologies  to
enhance the adoption of crop monitoring applications. AR-IoT
[145]  is  an  application  of  augmented  reality  (AR)  in  crop
monitoring,  which supports  IoT data visualization by using a
color  scale  to  represent  the  crop  parameters.  It  enables
agricultural data acquisition, with IoT-based multi-cameras, to
provide  3D  visual  serving  in  the  physical  world.  Results
showed that AR-IoT could be applied to monitor crops simply
and effectively. Daskalakis et al. [146] proposed a low-power
leaf  sensing  system  for  temperature  and  water  stress
measurements  on  plants.  The  system  used  solar  energy  as  a
power source. The sensor node can be used as a part of a low-
cost, low-power IoT-based agricultural monitoring system.

2) Livestock Monitoring: IoT helps the farmer in monitoring
and  raising  livestock.  Using  IoT  devices,  the  farmer  can
monitor  them remotely.  Zgank [147]  suggested  an  IoT-based

Table VIII (Continued)

Year Work Main
contribution Phy. layer Net. layer Mid. layer Serv. layer App. layer

Performance (+)
Limitation (–)

2017
Cambra
et al.
[228]

Smart IoT
irrigation
system

- Sensors: moisture, PH
- Actuators: irrigation
and fertilization
controller
- UAV

- LoRaWAN,
SigFox
- Wi-Fi
- 3G, 4G

Network
administrati
on
middleware

- Cloud
computing

Web
application

(+) 868 MHz mesh
networks is the best
solution for data
acquisition in farming
systems
(–) The flexibility of
system applications is
not provided

2017
Suma
et al.
[229]

IoT-based
smart
agriculture
monitoring
system

- GPS
- Sensors: soil moisture,
temperature, PIR
- Actuator: buzzer, relay

- GSM
- Wi-Fi N/A N/A

- Android
application for
monitoring and
control

(+) Sensors and
microcontroller
interfaced successfully
(–) Service layer (Cloud,
AI, etc.) is not present

2016
Furdik
et al.
[87]

Food
traceability
chain
management

RFID, WSN GPRS, Wi-Fi LinkSmart Cloud
computing

Mobile
application

(+) Provides context-
awareness
(–) Did not discuss
security and privacy

2015
Jayara-
man
et al.
[91]

Enabling high
resolution
precision
agriculture
driven by IoT

- WSN
- Soil sensor
- Temperature sensor

- N/A OpenIoT
- Cloud
computing -
Data analytics

- CoAP
- HTTP
- Visualization
application

(+) Dynamically select
sensors in order to meet
the service request
demand
(–) The flexibility of
system applications is
not provided

2015
Liu
et al.
[142]

Agriculture
greenhouse
environment
monitoring and
control system

- Sensors: temperature,
pressure, CO2, light,
humidity
- Actuator: fan controler,
curtain controler,
sprinkler

- ZigBee
- 2G
- ADSL,
Ethernet

N/A - Cloud
computing

CGI and GUI
control
application
application

(+) Improving
operational efficiency
while maintaining the
flexibility of system
applications
(–) The study of data
acquisition is not
provided compared to
work [228].

2013
Gaire
et al.
[88]

SAchitecture
design of a
smart farm

- GPS
- Weather and soil
related sensors
- Livstock tracking
devices

- N/A GSN - Cloud
computing

- Application
server
- Web
application for
visualisation

(+) Fast query capability
(–) The study of data
acquisition is not
provided compared to
work [150]

2012
Mendez
et al.
[153]

Smart WSN for
an agricultural
environment
monitoring

Temp, moist, humid,
light, pressure, water
level

- Wi-Fi
- Ethernet N/A N/A - Plotting

application

(+) The system is
scalable
(–) Service layer (Cloud,
AI, etc.) is not present
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swarm  monitoring  system  concept,  based  on  the  input  audio
signal picked up in a beehive and classified audio signal with
deep  learning.  Maroto-Molina et  al. [148]  developed  a  low-
cost  IoT-based  livestock  monitoring  system  using  GPS
collars,  Sigfox  network,  and  Bluetooth  tags.  It  was  tested  in
two  commercial  farms  that  are  based  on  global  edge
computing architecture [149]. Alonso et al. [150] presented a
dedicated platform for the application of IoT, edge computing,
AI, and blockchain technologies in intelligent agriculture. The
platform  was  developed  for  real-time  monitoring  of  dairy
cattle and crops conditions. It is also ensured the tracking and
the  sustainability  of  all  processes,  associated  with  the
production chain.

3) Environmental Monitoring: IoT technology has a critical
role  in  understanding  the  physical  world  through  real-time
data  on  air,  soil,  and  water.  Harun et  al. [151]  developed  a
method for manipulating the growth of Brassica Chinensis in
a  controlled  environment  using  LEDs  by  varying  the  light
parameters.  The  authors  also  studied  the  correlation  between
light,  environment,  and  the  morphology  of  the  plant  through
IoT platform. Treatment at different light intensities also had a
positive impact on plant yield.  Lazarescu [152] presented the
functional  design  and  implementation  of  a  cost-effective,
comprehensive,  multi-sensor,  quickly  deployable,  long  life,
low  maintenance,  and  high  quality  of  service  WSN platform
that  can  be  used  for  a  range  of  long-term IoT environmental
monitoring  applications.  Mendez et  al. [153]  designed  and
developed  a  smart  WSN  for  monitoring  agricultural

environments, suitable for various factors such as temperature
and  humidity.  Hirsch et  al. [154]  presented  a  low-power,
upgradeable,  IoT-based  architecture  for  farmers  in  the  field
and  for  scientists  to  monitor  the  environmental  impact  on
plant  development  by  monitoring  soil  moisture  and
temperature.  Lai et  al. [155]  proposed  an  air  quality
monitoring  and  real-time  prediction  system  using  low-cost
hardware based on IoT and edge computing. The authors used
the Kalman filter (KF) algorithm. Results showed an accuracy
of 27% on the edge side, and errors were decreased by 68.3%.

4)  Field  Monitoring: sensors  in  the  field  collect  data  and
transmit  them  to  the  processing  center,  which  uses  the
corresponding  software  applications  to  analyze  the  operating
data.  Gondchawar  and  Kawitkar  [156]  developed  a  GPS-
controlled robot system for remote monitoring and control of
field data and field activities. Popescu et al. [157] introduce a
cooperative hierarchical system structure between IoT, WSN,
and UAVs for  agricultural  field monitoring applications.  The
system proved both robustness and efficiency and showed an
increase  in  performance.  Baseca et  al. [158]  implemented  a
smart real-time decision support system prototype. The system
automatically learns decision rules from various types of data,
including irrigation events and selected parameters from field
and  weather  conditions.  The  platform  can  be  controlled
remotely  and  provides  an  open  network  of  intelligent
agriculture  data  with  common  layers  of  restriction  for  the
exchange of  information.  Chen et  al. [159]  offered a  reliable
delivery  protocol,  Multi-Packet  LoRa,  for  the  delivery  of
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Fig. 7.     Classification of IoT applications for smart agriculture.
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voluminous  messages,  such  as  images,  in  LoRa networks.  In
point-to-point  experiments  with  a  single  pair,  this  protocol
decreased image transfer time by an average of 24%.  Ahmed
et  al. [160]  introduced  the  WiLD  network,  an  WSN-based
solution  based  on  fog  computing  architecture  for  smart
agricultural monitoring. The main objective is to cover a more
extended range with lesser network delays.

5)  Unauthorised  Actions  Detection: plays  a  crucial  role  in
the  protection  of  the  farm.  Muminov et  al. [161]  established
the  concept  of  virtual  fencing,  an  intelligent  collar  device,
where  an  animal  is  given  a  stimulus  based  on  its  posture  on
one  or  more  fence  lines.  It  has  been  used  to  control  goats
without  visible  physical  fencing,  and  to  monitor  their  status.
The 20% probability that the goat would receive an electrical
stimulus,  is  used  only  if  the  goat  neither  turned,  nor  stopped
on  the  warning  zone.  Potamitis et  al. [162]  established  an
automated  insect  surveillance  accelerometer-based  sensor
device  at  a  global  scale  for  Tree  monitoring.  The  device
transmits short vibration clips stemming from an internal part
of  the  tree  to  a  remote  server.  The  proposed  device  can  be
used in different application scenarios,  including detection of
wood-boring  insects  in  trees  and  illegal  cutting  or  unauth-
orized tree movement detection.

6)  Remote  Sensing: is  based  on  the  interaction  of
electromagnetic  radiation  with  the  ground  or  the  plant.
Remote  sensing  usually  implies  the  monitoring  of  reflected
radiation,  instead  of  emitted  or  absorbed  radiation  [60].  In
[64], the authors used a UAV to provide height estimates of a
cornfield, using 3D photogrammetry technology, for corn crop
monitoring.

7)  Motion  Detection: applications  in  this  sub-class  usually
use  a  passive  infrared  detector  (PIR  sensor)  to  detect
movement in monitored areas. Liu et al. [163] developed and
constructed an agricultural IoT monitoring system using open-
source  hardware.  The  authors  developed  an  intelligent,
scalable,  and  inexpensive  IoT  gateway  with  built-in  motion
detection.  The  gateway  is  used  to  collect  data  as  well  as
control equipment remotely.

8)  Objects  Identification: is  common  in  a  different
agricultural  application  that  needs  to  identify  and  recognize
products  or  objects  for  various  purposes.  In  [32],  the  authors
investigated  the  potential  of  data  from  RFID  technology  in
remote  scale  to  monitor  cattle  visit  times  and  time  intervals
between cattle visits to water points.

9)  Light,  Gaz,  PH,  and  Temperature  Monitoring: is
essential  in  determining  the  ideal  conditions  for  controlled
environments.  In  [85],  the  proposed  system  framework  for
farm  management  incorporated  monitoring  and  control  of
properties  related to the crop,  the soil,  and environment  such
as  temperature,  O2,  CO2,  PH  level,  and  nutrient
concentration.

10)  Multimedia  Data  Acquisition: is  the  process  of
collecting multimedia data, such as images and videos, where
the  physical  conditions  of  the  real  world  are  measured,  and
then  processed  to  extract  useful  information.  In  [63].  The
authors presented the technical details and functionality of the
UAV-based  hyper-spectral  imaging  system.  They  also
discussed  the  image  processing  needed  to  acquire  a  high

quality hyper-spectral imaging dataset. 

C.  Smart Water Management
IoT can be used to improve water resource management and

achieve  efficient  and  optimal  results.  The  wise  use  of  water
resources in agriculture is essential to increase crop yields and
reduce  costs,  while  at  the  same  time  being  a  necessary  step
towards sustainability.

1)  Smart  Irrigation: An  efficient  irrigation  system  must
provide water to the entire field in a uniform manner, or else
the quality of the crop produced will be reduced [164]. Smart
agriculture  can  improve  water  distribution  on  the  farm  to
increase product quality and reduce wastage. The smart water
management  platform  (SWAMP)  project  [165]  provides  an
intelligent  IoT-based  water  management  platform  for  high
precision  irrigation  in  agriculture  with  a  practical  approach
based  on  four  pilots  across  Europe  and  Brazil.  The
management of agricultural water is divided into three phases:
water  supply,  distribution,  and  consumption.  SWAMP
provides  tools  for  the  use  of  various  applications  of  IoT  for
irrigation  management  according  to  the  crops  and  soil
moisture.  Data  collection,  processing,  and  synchronization
services  can  be  customized  by  users  for  multiple  plants,
weather  conditions,  and  countries.  Findings  indicated  that
SWAMP  can  reach  satisfactorily  results.  Nawandar  and
Satpute  [166]  developed  a  low-cost  neural  network-based
intelligent irrigation scheduling system for efficient irrigation.
The  system uses  MQTT and  HTTP to  inform the  user  about
the  current  crop  situation  at  any  time,  no  matter  how remote
the  location.  Fernández-Ahumada et  al. [167]  developed  an
intelligent,  automatic,  cloud-based,  and  low-cost  irrigation
system design.  SIGFOX is  used for  internet  connectivity.  By
focusing on reducing energy consumption,  the nodes became
self-sufficient for more than five years.

2) Desalination: is  a process for treating sea or salty water
in  desalination  plants  to  obtain  fresh  water.  It  is  beneficial,
particularly  for  the  agricultural  industry,  because  it  provides
sustainable freshwater in areas where there is no other source
of  water.  Muñoz et  al. [90]  proposed  and  tested  an  IoT
infrastructure  for  water  resources  management  in  agro-
industrial  environments.  This  work  focused  on  areas  with
desalination  plants,  public  utility  grid  connections,  and
various  consumer  entities.  This  structure  features  highly
efficient  management  methods  using  a  predictive  model
control  approach,  designed  to  minimize  operating  costs.  The
study  results  showed  that  approximately  75% of  total
operating  costs  can  be  saved.  Yaqub et  al. [168]  has
established  a  hybrid  desalination  plant  based  on  wind  and
solar  energy.  The  goal  for  this  work  is  concrete  conceptual
proof  of  concept  for  the  application  of  an  industrial  control
system (ICS), in the IoT framework.

3)  Soil  Moisture  Measurement: Being  aware  of  soil
moisture  status  ensures  highly  efficient  irrigation,  providing
water as required, and avoiding wasted water when irrigation
is not.  Angelopoulos et al. [169] designed, implemented, and
validated  an  intelligent  decentralized  irrigation  solution  for
strawberry greenhouses, which was tested in Greece. Each pot
uses  a  corresponding  soil  moisture  sensors  and  mote-driven
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electro-valve.  The  authors  concluded  that  the  intelligent
irrigation approach greatly surpasses the traditional method in
terms of water consumption, costs, and benefits.

4)  Weather  Forecast: is  essential  for  irrigation  scheduling,
i.e.,  the  coordination  of  time  and  amount  of  water  used  to
irrigate crops to maximize profits. Goap et al. [170] proposed
an intelligent  system for  predicting  irrigation  needs  based on
data from several sensors, including current soil moisture. The
system  also  uses  data  from  weather  forecasts  to  predict  soil
moisture for the coming days. The prototype system is based
on open standard technologies.

5) Water Quality and Pressure Monitoring: is an important
step  in  understanding  the  chemical  and  physical  composition
of water, as well as identifying and detecting leaks and breaks
in  irrigation  systems.  In  [49].  The  authors  designed  and
implemented a solution for the real-time monitoring of water
management,  including  water  quality  measurement,  with  the
aim of power consumption optimization.

6)  Humidity  Monitoring: A  humidity  sensor  measures  and
detects both the humidity and temperature of the air. Rao and
Sridhar  designed  a  system  that  uses  humidity,  soil
temperature,  and  light  information  from  many  sensors  to
calculate  the  amount  of  water  needed  for  irrigation  [171].  In
[172], the authors proposed an irrigation control scheme using
an IoT-driven WSN system; many sensors used included soil
moisture  and  temperature,  environmental  temperature  and
humidity,  CO2  sensor,  and  daylight  intensity  sensor,  to
acquire  real-time  farm  information.  The  framework  utilizes
structural  similarity  (SSIM)-based  water  valve  management
mechanism and  a  fuzzy  logic  weather  model.  Control  orders
for  irrigation  valves  are  generated  successfully  in  nearly  all
weather situations.

7)  Decision  Support  Systems: is  the  component  with
responsibility  for  making  the  final  decisions  on  irrigation
actions. In [105], authors developed a decision support system
for  smart  agriculture  that  uses  data  from  several  sensors
obtained via a LoRaWAN network, as well as meteorological
data and crop information, to make informed decisions.

8)  Water  Loss  Control: is  the  action  of  preventing  water
leakage  or  unnecessary  irrigation  using  IoT  technologies.
Campos et al. [173] proposed a smart and green framework to
offer intelligent irrigation services, such as monitoring of data,
pre-treatment,  storage,  and  control  of  irrigation  enriched  by
soil moisture prediction. On average, between 56.4% and 90%
of irrigation water can be saved.

9)  Rain  Detection: is  accomplished  by  a  rain  sensor  to
detect  unpredictable  rainfall  management.  Severino et  al.
[174]  presented  a  framework  for  intelligent  irrigation  in
agricultural  applications.  It  consists  of  an  autonomous
network  of  sensors  that  collect  data  on  soil  moisture  and  the
concentration  of  dissolved  contaminants.  The  framework
incorporates  all  this  data,  together  with  predicted  precipita-
tion, into predictive models of soil  moisture and contaminant
migration  dynamics.  It  uses  these  models  to  optimize
irrigation management strategies and to reduce environmental
impact. 

D.  Agrochemicals Applications
Annual  agricultural  losses  caused  by  insects,  weeds,  and

diseases  are  estimated  by  FAO  to  be  between  20  and  40
percent  of  total  production.  While  pesticides  are  essential  in
reducing  crop  losses,  if  misused,  they  can  have  harmful
effects  on  human  health  and  the  environment.  IoT  can  help
farmers to minimize waste and increase crop yields. Wireless
sensors  detect  nitrogen,  phosphate,  and  potassium  (NPK)
levels  in  the  soil.  Agrochemicals  are  agricultural  chemicals,
commonly  referred  to  as  pesticides  and  fertilizers,  which  are
used  in  agriculture  to  control  insects  and  weeds  and  prevent
disease and promote plant growth. Examples of agrochemicals
include pesticides, herbicides, insecticides, and fungicides.

1)  Fertilization: The  most  commonly  used  fertilizers  in
agriculture contain the three primary plant nutrients: nitrogen,
phosphorus, and potassium. Lavanya et al. [175] developed a
smart fertilization system based on IoT and AI. The designed
NPK  sensor  integrates  the  colorimetric  mechanism  by  using
light  dependent  resistor  (LDR)  and  light  emitting  diodes
(LEDs). The authors also developed a fuzzy rule-based system
to analyze measured data  and to  determine proportions  of  N,
P, and K in the soil.

2)  Pest  Control: Sensors  can  collect  data  automatically,
such as the presence of a pest,  or a trap trigger that indicates
that  a  pest  has  been  captured.  Yue et  al. [176]  proposed  an
intelligent  high-resolution  model  for  pest  detection.  Results
showed that the proposed method greatly improved the recall
rate, reaching 202.06%.

3) Herbicides Application: The most  popular  technique for
weed  control  is  herbicide  spraying.  In  [177],  a  system based
on  IoT,  image  processing,  and  machine  learning  to  identify
weeds and to selectively spray the right amount of herbicides.

4) Solar Pest Control Light: is a green pest control method
with solar insecticidal lamps (SILs) [178]. It  is a low-voltage
power  supply  system  that  does  not  only  reduce  pesticide
residues,  but  also  significantly  increases  the  value  of
agricultural  products.  It  acts  as  a  trap  that  kills  pests,  while
avoiding the need to reduce pesticide residues. It is also safer
for humans and animals.

5)  UAV-Based  Agrochemicals  Spraying: significantly
reduces  the  time  and  cost  of  manual  spraying  and  sprayer
rental. Faiçal et al. presented a demonstration of a UAV-based
architecture that  can be used to implement  a  control  loop for
smart  farming  applications,  where  UAVs  are  tasked  with
spraying chemicals on crops [179]. The authors proposed and
evaluated  an  algorithm  that  automatically  adapt  the  UAV’s
route according to changes in wind intensity and the direction.
The  algorithm  input  is  the  WSN  feedback  deployed  in  the
field.  Results  showed  that  this  system  could  significantly
reduce pesticide and fertilizer wastage.

6)  Weed  Detection: Weeds  can  be  a  significant  factor
affecting crop yields. Machine learning, combined with image
processing  techniques,  has  become  a  promising  tool  for
accurate,  real-time detection  of  weeds  and  crops  in  the  field.
Lottes et  al. [180]  presented  a  visually  based  approach  to
weed  classification  that  operates  on  image  sequences.  It
carries  out  a  semantic  segmentation  of  images  according  to
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pixels,  into  soils,  crops,  and  weeds.  Potena et  al. [231]
implemented  a  real-time,  accurate  weed  classification  based
on  a  summarised  training  set,  using  a  multi-spectral  camera
mounted on a ground agricultural  robot.  Experimental results
showed a high-precision classification.

7)  Insecticides  Application: in  agriculture  is  used  to  kill
insects;  however,  it  can  also  harm  crops.  Therefore,  IoT  can
help  decrease  the  use  of  unnecessary  use  of  chemicals.  Lee
et  al. [181]  developed an IoT system for  reducing the  use  of
insecticides  in  fruit  trees  and  to  predict  when  pests  appear
according to temperature and humidity.

8)  Soil  NPK  Sensing: is  one  of  the  keys  required  in  soil
analysis  for  fertilization  is  to  determine  the  level  of  soil
nutrients in the soil, followed by nutrient requirement and site-
specific  fertilization  recommendations.  Ramane et  al. [182]
developed a  fiber  optic  sensor  to  detect  N,  P,  and K nutrient
levels  in  the  soil.  It  is  based  on  the  colorimetric  principle,
where light absorption by a solution causes a variation in the
output of the sensor. 

E.  Disease Management
Diseases  damage  plants  and  animals,  as  well  as  affect

market  availability  and  agricultural  production.  Disease
management  using  IoT  and  emerging  technologies  is  the
practice of minimizing crop and livestock diseases to increase
yields and prevent losses.

1)  Crop  Health  Monitoring: The  regular  surveillance  of
crop health conditions on a continuous basis will help farmers
to increase their productivity on a large scale with a minimum
of  effort.  Pantazi et  al. developed  an  automated  method  for
identifying crop diseases on various leaf samples of different
species  [183].  It  was  trained  to  identify  four  different  health
conditions.  A 95% total  success  rate  was  achieved  for  all  46
combinations of plant conditions that was tested. Furthermore,
the application can determine the health conditions mentioned
above in plant varieties other than the ones previously tested,
and  to  classify  them  in  new  categories.  Uddin et  al. [184]
deployed  a  crop  health  monitoring  system  using  IoT  and
UAVs.  The  system  can  withstand  harsh  climatic  conditions
and  can  integrate  heterogeneous  sensors  to  collect  the
necessary data. Kim et al. [185] proposed a farm as a service
(FaaS)  integrated  system,  that  can  process  the  collection,
analysis,  and  forecasting  of  information  on  the  agricultural
environment  on  the  cloud,  and  supports  sophisticated
application services by running and supervising farms as well
as handling the corresponding devices, data, and models. The
authors  developed  an  infection  prediction  model  specialized
for strawberry diseases.

2)  Livestock  Health  Monitoring: The  identification  of
livestock diseases can be managed through regular monitoring
and  recording  of  animal  feeding  and  daily  behavior.  Kumar
and Hancke [186] presented a prototype for an animal health
monitoring  system.  It  was  tested  to  monitor  real-time
livestock  physiological  and  environmental  parameters.  In  the
developed sensor module, the energy consumption is low. The
sensor module is miniaturized, smart,  user-friendly, low-cost,
and  is  high-quality.  The  results  showed  a  high  degree  of
accuracy.  Edwards-Murphy et  al. [187]  developed  a

heterogeneous  WSN-based  smart  health  monitoring  beehive
network.  The  collected  data  include  pollutant  gases,  weather
data, O2, and others that provides an analysis dimension. The
decision tree-based classification algorithm for describing the
beehive  reached  a  95.38% accuracy,  and  short  term  local
forecasts  for  environmental  monitoring  achieved  95.4%
accuracy.

3)  Disease  Prediction: is  used  to  predict  the  occurrence  of
diseases in crops and livestock. Khattab et al. [188] developed
an  IoT-based  monitoring  system  for  multiple  plant  disease
control.  Environmental  monitoring  services  are  available  to
keep the conditions in which crops grow optimal, and predict
the  occurrence  of  disease  epidemics  rapidly.  The  proposed
system  mimics  the  decision-making  skills  of  an  expert  on
diseases.

4) Behaviors Monitoring: using wearable sensors to monitor
animal  behaviors  is  becoming  an  essential  option  for  farm
management.  Başçiftçi  and   Gündüz [189]  designed  an  IoT-
based  circuit  to  be  placed  in  the  rumen  part  of  cattle,  which
can  be  useful  in  diagnosing  acidosis  disease.  The  developed
system record nutrition parameters and behaviors of animals.

5)  Disease  Detection: Rapid  and  accurate  detection  and
diagnosis  of  diseases  play  a  crucial  role  in  agricultural
production,  and  in  minimizing  both  qualitative  and
quantitative  losses.  Zhao et  al. introduce  an  effective  IoT-
based  agricultural  system  for  automatic  crop  disease
recognition in the wild, based on a deep learning system using
a multi-context fusion network (MCFN) approach, and visual
features  from  over  50  000  in-field  crop  disease  samples.
Experimental results on 77 common crop diseases achieved a
good identification accuracy of 97.5% [190].

6)  Disease  Prevention: Controlled  environments  based  on
IoT  help  prevent  and  control  diseases  affecting  agricultural
goods.  In  [191],  the  authors  designed  and  implemented  a
WSN-based  greenhouse  automatic  dew  condensation  control
system  to  prevent  the  phenomenon  of  dew  condensation  on
the leaf surface of crops, which is considered to be a factor in
plant  disease  development.  The  results  proved  that  the
proposed system could predict and prevent dew condensation,
by  controlling  the  conditions  of  dewdrop  formation  in  the
greenhouse environment.

7)  Blood Pressure  and Heart  Rate  Monitoring: The  use  of
IoT  devices  and  sensors  ensures  continuous  monitoring  of
livestock blood pressure and heart rate. It is an essential factor
in determining animal agitation and stress [15].

8)  Disease  Classification: Many  reviewed  projects  have
carried out classification using deep learning models to help in
the identification of livestock, plant leaf diseases. In [193], the
authors proposed an intelligent IoT-based agriculture decision
support  system,  applied  to  large  biomedical  datasets,  such as
plant disease datasets, as well as real-time applications, which
improved the accuracy of classification by 9.52% and 5.71%,
and  reducing  characteristics  by  58.50% and  72.73%,
respectively. 

F.  Smart Harvesting
A wide variety of smart harvesting systems were developed

for intelligent agriculture [240]. These systems can reduce the
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harvesting cost by about 35–45% [241].
1)  Objects  Detection: is  based on image processing,  which

involves  detecting  instances  of  a  specific  class  of  objects  in
images  or  videos.  In  [194],  the  authors  proposed  a  vision-
based  fruit  detection  system,  by  performing  a  supervised
machine  learning  task,  that  trains  a  model  of  the  object  of
interest. Lin et al. [195] presented a framework for detecting a
wide  array  of  fruit  types.  The  algorithm  was  evaluated  on
image  datasets  of  450  images  captured  in  the  natural
environment.

2)  Robotic  Arms: The  harvesting  stage  is  one  of  the  main
areas  of  robot  application  in  agriculture.  Thangavel  and
Murthi  [196]  suggested  a  system  that  would  automatically
harvest  the  tea  leaves  by  a  robotic  arm that  would  pull  them
off  according  to  the  applied  quality,  using  key  image
extraction and optical flow. Barnett et al. [69] investigated the
division  of  harvesting  tasks  so  that  several  robot  arms  can
harvest, in the shortest possible time, kiwifruit.

3)  Motion  Control: Harvesting  robots  can,  at  any  time,
receive direct commands from the farmer for controlling their
movements,  which  makes  the  harvesting  task  more  efficient.
Megalingam et  al. [197]  presented  the  design  of  an
inexpensive  robotic  arm  capable  of  pruning  and  harvesting
tree  fruits.  A  mobile  application  developed  to  control  the
motion of the robotic arm via Bluetooth.

4)  Fruit  Detection  and  Classification: Successful  detection
of fruit in the tree is one of the most important requirements of
a  fruit  harvesting  system.  Kang  and  Chen  [198]  developed  a
DL-based framework of  a  fruit  detection in apple harvesting.
It  comprises  a  smart  and  real-time  fruit  detector  named
“LedNet” from  800  images  collection.  Experimental  results
showed  achievement  of  0.821  and  0.853  on  recall  and
accuracy  on  apple  detection,  and  an  average  computational
time  of  28  ms.  Reference  [199]  proposed  and  improved  a
faster region-based convolutional neural network (R-CNN) for
multi-class  fruit  recognize  of  different  sizes.  Results  showed
more than 91% mAP for apples, mango, and orange.

5)  Colors  and  Shapes  Recognition: Lin et  al. [200]  has
proposed  an  algorithm  to  guide  harvesting  robots  to
automatically  pick  up  fruits  based  on  three  different  criteria:
color, depth, and shape. The results showed that the algorithm
applies  to  agricultural  harvesting  robots  equipped  with  an
inexpensive RGB-D sensor, but was quite time-consuming.

6)  Obstacles  Detection: A  collision  with  a  greenhouse
construction  element  can  cause  damage  to  the  greenhouse
construction  or  the  harvesting  robot.  Thus,  an  obstacle
detection  mechanism  should  be  implemented  to  avoid  this
type  of  injury.  In  [201],  the  authors  focused  on  the
development  of  an  obstacle  mapping  system  for  pepper
harvesting to plan a collision-free movement for a harvesting
robot.  The  authors  separated  hard  and  soft  obstacles,  as  the
dense  obstacle  map  requires  the  robot  manipulator  to  push
some obstacles sideways, to reach the target.

7) Optimal Harvest Date: Yield loss occurs if harvesting is
carried out earlier or if it is delayed, both are undesirable. Xu
et  al. [202]  proposed  a  method  for  predicting  the  optimal
harvest  date  of  corn  in  the  field  using  multi-spectral  remote
sensing imagery. The technique also reduced requirements for

field data collection, which is critical for vast area crops. 

G.  Supply Chain Management
It is the process of managing the flow of goods and services,

from the raw materials to the finished products. The escalating
demand  of  the  final  consumer  for  safe  and  healthy  food,
imposes  strict  obligations  for  a  well-structured  traceability
system  [33].  ICT  technologies,  including  IoT,  provide
significant changes in the agricultural supply chain and deliver
critical technologies, to establish a smooth flow of the supply
chain  information  from  farm  to  fork. Table IX provides  a
compilation of selected projects, including a brief description
of the work focus, the supply chain mechanism employed, and
whether  the work takes into account  network latency,  energy
management, storage, and security.

1)  Products  Identification: RFID  tags  can  be  extensively
used to categorize, identify, and manage the flow of products
in  an  industrial  context.  To track  Chinese  agri-food supplies,
Tian  [33]  presented  a  traceability  system  using  RFID  and
blockchain.  Leng et  al. [203]  explored  the  application  of
RFID in the Identification process of agricultural products and
testing the efficiency of the system.

2)  Traceability  via  Blockchain  Technology: Blockchain
technology is a distributed data structure that is mirrored and
shared  among  network  members,  and  it  can  be  applied  in
many  fields  and  different  areas  where  IoT  applications  are
involved  [242],  [243].  Machine  learning  approaches  can  be
combined  with  blockchain  technology  for  secure  smart
agriculture  [244]–[246].  Therefore,  the  blockchain  techno-
logy  promises  future  secure  and  transparent  system  for  the
exchange  of  supply  chain  and  logistics  information  across
supply  networks.  AgriBlockIoT  [204]  is  a  decentralized
traceability solution, based on blockchain for agri-food supply
chain  management.  It  is  capable  of  smoothly  integrating  IoT
devices  in  the  food  supply  chain  for  a  transparent,  fault-
tolerance,  immutable,  and  auditable  records,  using  two
different  blockchain  implementations:  Ethereum  and
Hyperledger  Sawtooth.  Casado-Vara et  al. [205]  proposed  a
blockchain  approach  to  improve  the  current  agricultural
supply chain. The researchers focused on a multi-agent system
to  solve  real-time  problems  in  the  supply  chain  sector.  The
principal goal of the proposed approach was to secure shared
information.  BRUSCHETTA  [206]  is  a  blockchain-based
system for  tracking  the  entire  process  of  production  of  Extra
Virgin  Olive  Oil  by  allowing  customers  to  access  a  copy  of
the full immutable product history. The authors also suggested
and  tested  a  dynamic  auto-tuning  mechanism  for  the
parameters  of  the  blockchain,  to  guarantee  the  timely
publication  of  information  in  the  system.  Hang et  al. [207]
proposes a blockchain-based fish farm platform. The designed
platform  aims  to  provide  fish  farmers  with  scalability,  high
throughput, off-chain storage, and privacy. A proof of concept
that integrates a legacy fish farm system with the Hyperledger
Fabric  blockchain  is  implemented  on  top  of  the  proposed
architecture.

3) Food Safety and Quality Control: The use of IoT in the
food  supply  chain  will  improve  food  safety  and  quality
through monitoring and surveillance of food conditions along
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the  food  supply  chain,  and  sharing  the  data  obtained  with
consumers and supervisors. In [208], the authors developed a
system to detect adulterants in food products. This system can
be used by different actors, including farmers and consumers,
to catch food adulteration. Various sensors are included in the
system.  Rajakumar et  al. [209]  developed  an  IoT  system for
food  fraud,  which  focuses  on  the  detection  of  adulterants  in
milk  using  several  sensors  such  as  gas  sensor,  temperature
sensor, and RFID readers. In [210], the authors developed an
IoT  system  to  control  food  quality,  the  system  monitor,  and
analyze  the  quality  of  meat  and  seafood  products  during  the
supply  chain.  Several  sensors  have  been  used  to  detect  food
spoilage, such as temperature and humidity sensors.

4)  Agricultural  Mobile  Crowd  Sensing: Mobile  crowd
sensing (MCS) is a strategy in which large-scale and complex
detection tasks  are  performed by a  wide range of  individuals

with  mobile  detection  and  computing  devices  by  collectively
measuring  and  sharing  valuable  information  [40].  Farmers
with smart devices will  have a higher likelihood of obtaining
agricultural data in the field, making it possible to apply MCS
in  agriculture.  MCS is  a  critical  way to  improve  the  existing
agricultural data collection system.

5)  Chain  Risk  Control: The  ability  to  identify  risks
immediately  at  any  point  in  the  food  supply  chain  ensures  a
much  higher  level  of  safety  for  the  consumer  and  the
manufacturer.  Wang  and  Yue  [211]  proposed  a  food  safety
system  that  tracks  all  relevant  data  detected  throughout  the
supply  chain,  and  automatically  alerts  food  manufacturing
managers if any food safety risk is identified. The system can
effectively  identify  safety  risks  and  accurately  determine
whether  a  warning  should  be  issued  based  on  expert
assessment.  When  the  system  detects  a  problem,  it  provides

 

TABLE IX  
Research Works on Supply Chain Management for Agricultural IoT

Research work Supply chain mechanism Latency Energy Storage Security Focus of this work

Makhdoom et al. (2020) [232] Blockchain √ √ √ √ Privacy preserving and secure data sharing
framework

Wang et al. (2020) [233]
Decentralized Stackelberg and
a Nash bargaining cost sharing

models
× √ √ × Green fresh product supply chain

optimization

Arena et al. (2019) [206] Blockchain × × × √ Traceability and certification of extra virgin
olive oil

Leng et al. (2019) [203] RFID √ √ √ × Identification of agricultural products in the
supply chain

Caro et al. (2018) [204] Blockchain √ × √ √
Blockchain-based traceability solution for

Agri-Food supply chain management

Gupta and Rakesh (2018) [208] Smart device × × × √
Food adulteration detection system can be

used to detect the presence of adulterants in
the food product

Casado-Vara et al. (2018) [205] Blockchain × × √ √
Multi-agent system uses smart contract, to

manage the entire Blockchain-based
alimentary supply chain

El Maouchi et al. (2018) [234] Blockchain × × × √
A fully transparent, decentralized

traceability system for the supply chain

Rajakumar et al. (2018) [209] Smart device √ √ × ×
IoT system for food fraud, which

concentrates on the detection of adulterants
in milk

Leng et al. (2018) [235] Blockchain × √ √ √
Agricultural business resource Blockchain,

based on double-chain structure

Davcev et al. (2018) [236] Blockchain √ √ √ √
Food on demand cognitive model with a

high level of trust and quality control
system for the food supply chain

Nirenjena and collegues (2018) [210] Smart device √ √ × ×

Monitor and control food quality, authors
used the system to monitor and analyse the

quality of meat and seafood products
throughout the supply chain as a case study

Lucena et al. (2018) [237] Blockchain × × √ √
Discuss and stress the benefits achieved

through the application of the Blockchain
platform in the agricultural context

Tian (2017) [238]
Hazard analysis and critical
control points (HACCP) and

blockchain
√ × √ √ Real-time food tracing system for food

supply chain

Wang and Yue (2016) [211] RFID, AI (Apriori algorithm) × × × √
Develop an early warning system to assist
managers of food producing companies to

detect food safety risks in advance

Tian (2016) [33] Blockchain & RFID √ × √ √
Agri-food supply chain products

identification and traceability system

Zhang et al. (2013) [239]
Self-adaptive dynamic partition

sampling (SDPS) strategy × × √ √
Tracing contamination sources in large IoT
systems for complicated food supply chains

Chain

(√): Supported; (×): Unsupported.
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some  useful  decision-support  information  to  maintain  the
quality  and  the  safety  of  food  products.  A  case  study  was
carried out in dairy farms. 

H.  Smart Agricultural Practices
1)  Agrivoltaic  Systems: The  concept  of  Agrivoltaics  (a.k.a.

agrophotovoltaic  (APV))  was  initially  proposed  in  the  year
1982,  by  Goetzberger  and  Zastrow.  APV  systems  combine
solar panels and crops at the same time, and on the same land
area,  leading to a potential  growth in the overall  productivity
up to 73% [247], and 30% more economic value of farms over
traditional  agriculture  [248].  Various  scientific  and
commercial  APV  projects  have  been  implemented  over  the
past  few  years  [249]  in  many  application  modes  [250],
including  greenhouses,  breeding,  and  fisheries.  It  is
considered  the  next  generation  of  smart  farming  [19],  [251].
Agrovoltaico system is a type of APV technology [212]. The
system  produces  renewable  energy  on-farm  without
negatively affecting land productivity [214]. For maize crops,
it showed a yield increase of 4.3% [212]. Valecce et al. [213]
presented  the  Solarfertigation  system,  an  IoT  based  smart
fertilization  and  irrigation  system  with  low  power  network
protocol architecture and a photovoltaic plant for energy self-
sustainability  to  power  it.  The  system  can  make  decisions
based  on  environmental  data  that  drive  automated  actions,
such as irrigation or fertilization. Sharma et al. [252] proposed
a  solution  to  address  the  limited  energy  availability  problem
by  using  solar  energy  harvesting  technologies  to  charge  the
batteries  of  the  WSN  nodes.  Results  of  simulations  showed
that  the  life  of  the  WSN  has  increased  from  5.75  days  to
115.75 days. Besides,  the throughput of the network has also
increased from 100 Kbit/s to 160 Kbit/s.

2)  Greenhouse: is  the  main  form  of  growing  plants  in  a
controlled  agricultural  environment.  Kang et  al. [215]
presented an agricultural cyber-physical-social system (CPSS)
for  the  management  of  farming  production,  featuring  solar
greenhouse  as  a  practical  case  study.  Social  and  physical
sensors  are  used  as  system  inputs,  and  data  is  used  for  real-
time  monitoring  and  prediction.  The  decision  support
mechanism is based on the ACP method, which is composed
of artificial societies for modeling, computational experiments
for  analysis,  and parallel  execution for  control  [216],  leading
to  a  smart  control  facility  for  the  greenhouse.  Ferrández-
Pastor et  al. [217]  proposed  architecture  for  intelligent  IoT-
based  agricultural  monitoring  and  control  system  based  on
two  levels  of  communication  and  processing,  edge,  and  fog
nodes.  Fog nodes  are  used  to  carry  out  the  machine  learning
processes,  store  data,  and  communicate  with  the  cloud.
González-Amarillo et al. [218] developed a traceability model
for  tracking  seedlings  and  other  agricultural  products  in
greenhouses.  Variables  control  is  performed  using  proporti-
onal, integral, and derivative (PID) analog techniques. Results
showed that humidity levels over 80% relative humidity are a
favorable environment for pathogens, while below 60% levels
cause water stress and low photosynthesis rates. The proposed
model  reduces  water  and  energy  consumption.  Authors
designed a  web-based system that  can  be  used  by farmers  to
access  information  about  seedlings  or  observe  the  harvest  of

the products in the greenhouse.
3)  Hydroponics: is  the  process  of  growing  plants  without

soil. The roots of the crop are exposed to the mineral solution.
Lakshmiprabha and Govindaraju [219] proposed an intelligent
monitoring  and  control  system  for  the  hydroponic
environment,  data  such  as  water  flow-rate,  temperature  and
humidity  were  recorded  with  their  respective  times  in  the
ThingSpeak  IoT  platform.  Mehra et  al. [55]  developed  an
intelligent IoT-based hydroponics system. The system delivers
the  proper  control  action  for  the  hydroponic  environment
based on the multiple input parameters collected. The control
action provided for real-time data has reached an accuracy of
88%.  Cambra et  al. [220]  designed  a  self-calibrating  PH
sensor that can detect and adjust nutrient pH level imbalances
used in hydroponic agriculture. The collected data is presented
through a user-friendly web portal,  for easy management and
visualization.

4)  Aeroponics: is  one  of  the  techniques  of  soilless  culture.
The  process  involves  growing  plants  in  an  air  or  mist
environment without the use of soil or an aggregate medium,
where  plants  grow  suspended  in  the  air,  and  the  roots  are
sprayed  with  water.  Compared  to  other  soilless  systems,
aeroponic  reduce  water  usage  through  continuous  water
circulation  [222].  Francis et  al. [221]  proposed  an  IoT-based
aeroponics  system,  sensed  data,  including  temperature,
humidity,  PH value of  water,  and the  light  are  measured and
uploaded to the cloud. Multiple LED strip lighting was used to
compensate for the ambient light.

5)  Aquaponics: refers  to  any  system  that  combines  the
production of  aquatic  organisms with plant  production [223].
IoT-based aquaponics helps to monitor the growth conditions
of both marine creatures and hydroponic plants. Water is used
both for plant growth and to breed fish or other water cultures.
In  [224],  the  authors  presented  a  monitoring  system  for
aquaponics  based  on  IoT  and  cloud  computing.  The  system
measures  water  temperature,  water  depth,  dissolved  oxygen,
PH, and fish activity.

6) Vertical Farming: is the practice of growing products in
layers  that  are  stacked vertically.  It  can use soil,  hydroponic,
or  aeroponic  methods  of  farming.  Vertical  farming  seeks  to
produce food in some challenging environments, for example,
when  there  is  little  or  no  available  arable  land.  Haris et  al.
[225]  proposed  an  of  an  indoor  vertical  farming  prototype,
based  on  fog-cloud  computing,  and  provided  by  CPS/IoT
ecosystem and Arrowhead IoT framework. The system is built
using service-oriented architecture. The network contains two
types  of  sensor  nodes:  the  environmental  and  the  soil-based
measurement nodes.

7)  Plant  Phenotyping: refers  to  a  description  of  the
anatomical,  ontogenetic,  physiological,  and  biochemical
quantitative characteristics of the plant [253]. All plant-related
sciences,  from  the  molecular  to  the  field  scale,  must  be
integrated  to  develop  strategies  for  a  sustainable  plant.
Selvaraj et  al. [226]  developed  an  aeroponic  system  to
examine  cassava  root  architecture  during  the  early
differentiation  of  storage  roots,  as  well  as  being  able  to
perform  reliable  high-throughput,  and  non-destructive
phenotyping.  The  results  obtained  from  this  research  had
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significant  implications  for  the  genetic  improvement  of
cassava, and its durable intensification. 

VII.  Real-World Case Studies

In this section, we look at a few fresh real-world cases, that
were briefly cited above,  which use most  of  the technologies
examined  in  this  study,  and  that  have  achieved  excellent
results  in  improving  the  value  of  quality  in  IoT-based  smart
farming. 

A.  Case Study 1: Greenhouse System
A  greenhouse  system  that  can  accommodate  the  require-

ments  of  the  soil-less  greenhouse  using  low-salinity  water,
was implemented in a frame of south-east Spain, as a part  of
the  EU  DrainUse  project  [101].  The  real-life  deployment  of
the  system  is  shown  in Fig. 8(a),  while  the  architecture  is
illustrated  in Fig. 8(b).  The  project  is  composed  of  three
layers.  The  first  layer  is  a  local  CPS,  that  interact  with  IoT
sensors  and  actuators,  to  gather  data  and  carry  out  tasks  in
real-time, and linked to greenhouse installations.

The  second  layer  is  the  edge  computing  layer,  where  data
collection  and  task  offloading  takes  place.  This  layer  is  also
responsible  for  controlling  virtualized  nodes  with  NFV
technology, and improving the reliability of the system in case
of  network  access  failure.  The  last  layer  is  the  cloud
computing  layer,  where  complex  calculations  and  data
analysis  are  performed  for  better  decision  management.  The
last  two layers are implemented using the FIWARE platform
[95].  6LowPAN  is  used  to  connect  with  IoT  sensors  and
actuators,  while  protocols  as  MQTT  and  CoAP,  are  used  to
connect  the  CPS.  The  project  was  tested  with  two  cycles  of
the  tomato  crop,  and  showed  that  over  30% water
conservation  has  been  achieved,  and  up  to  80% for  certain
nutrients. 

B.  Case Study 2: Aerial-Ground Robotics
The  flourish  research  project  focused  on  building  an

adaptable  robotic  solution  for  precision  agriculture,  that
integrates  the  aerial  surveying  capabilities  of  UAV,  with  a
general-purpose  unmanned  ground  vehicle  (UGV)  [67].  The

overall concept of the system is shown in Fig. 9(a). The UAV
monitors a field by collecting crop and weed data by mapping
wide  zones,  while  meeting  the  requirements  of  the  batteries,
then  sharing  the  information  with  a  UGV,  that  is  used  for
specific data evaluation and actions, with secure navigation in
a  cultivated  area,  including  accurate  location  and  crop  row
detection.  Aggregated  information  is  then  passed  on  to  high
computation  operators  for  better  analytics  and  decision-
making.
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Fig. 9.     Aerial-ground robotics system [67].
 

The  UGV  system  is  the  BoniRob  Bosch’s  Deepfield
Robotics  system  as  shown  in Fig. 9(b),  which  is  a  research
platform for agricultural robotics. The UGV is equipped with
a diverse range of  sensors,  including GPS,  RTK-GPS, lidars,
RGB and hyperspectral cameras, wheel odometer, and others.
The  UGV  features  intervention  modules  for  weed  classifi-
cation,  multi-modal  actuation  systems,  and  their  associated
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support  aggregates.  The  UAV  system  is  a  DJI  Matrice  100
multi-rotor  shown in Fig. 9(c) that  integrated  various  sensors
for real-time weed detection, GPS positioning, visual-inertial,
and  egomotion  estimation.  The  project  implemented  multi-
spectral  perception  algorithms  for  aerial  and  terrestrial
systems to effectively track and to accurately classify crop and
weeds, and calculate the plant sanitary indicators. The project
also  implements  modules  for  selective  crop  spraying,
mechanical treatment, and the removal of weeds. A field task
integrating the previous modules was successfully carried out
in a rough and flat environment. 

C.  Case Study 3: Photovoltaic Agricultural IoT
A novel IoT-based agricultural paradigm is proposed for the

first time in [251], it is called the photovoltaic agricultural IoT
(PAIoT). Fig. 10 illustrates  a  model  of  the  concept,  where
IoT-based  devices  located  in  the  physical  layer  could  use
photovoltaic  solar  electricity  via  wireless  energy transfer  and
could  communicate  using  active  transmission,  wireless,  and
wired backscatter techniques. With the advantage of sufficient

and  permanent  power,  it  is  possible  to  process  and  analyze
data  locally  to  provide  continuous  feedback  and  to  perform
real-time actions.

The  research  group  investigating  the  key  questions  that
concern  the  feasibility  of  PAIoT  and  identified  some  issues
[19],  including  the  efficient  use  of  water  resources  for
cleaning  panels  together  with  agricultural  activities,  cost-
effective  deployment  of  nodes,  optimization  of  data  transmi-
ssion  in  the  agricultural  environment,  environmental  climate
impact,  and  troubleshooting  of  the  photovoltaic  module.  By
doing  this,  the  research  group  recognized  a  better  unders-
tanding  of  how  to  implement  the  PAIoT,  thereby  enhancing
the level of smart farming. 

D.  Case Study 4: Smart Dairy Farming
MooCare is and IoT-based smart dairy farm model used in a

dairy  farm  located  in  the  south  of  Brazil  [254],  which  is
illustrated in Fig. 11(a).  It  was developed to  help dairy  cattle
producers achieve better productivity rates by analyzing their
milk  production  and  providing  automatic  and  individualized
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nutrition to the animals.  The data collected from IoT devices
allows  the  provision  of  milk  production  forecasts  based  on
individual  cows.  This  way,  breeders  can be  well  informed in
advance, and thereby better reacting in terms of developing a
better nutritional plan from which each cow can benefit from a
personalized diet. The model also supports a procedure for the
valuation  and  notification  of  non-conformities.  MooCare  is
composed of two essential modules MooField and MooServer,
as shown in Fig. 11(b). The MooField module is handling data
collection  for  food  production  and  supply,  animal  identifi-
cation,  and  feeding.  This  module  incorporates  multiple  IoT
technologies  including  RFID  tags,  milk  production  sensors,
feed actuators, and a system controller.

The  MooServer  module  is  a  centrally  located  controller
designed  for  collecting,  visualizing,  and  storing  data.  It  also
incorporates  prediction  engine,  feeding,  and  notification
services.  The  communication  between  the  two  modules  is
done  through  HTTP.  The  prediction  engine  auto-regressive
moving  average  (ARIMA)  showed  better  results  against
artificial  neural  networks  (ANN),  and  random  forest  (RF)
prediction  algorithms.  The  forecasting  accuracy  of  the
MooCare  model  was  94.3%,  which  indicates  that  it  can
adequately predict milk production. 

E.  Case Study 5: Solar Insecticidal Lamp
A  group  of  researchers  from  Nanjing  Agricultural  Univer-

sity  in  China  have  proposed  the  concept  of  IoT-based  solar
insecticidal  lamps  (SIL-IoTs),  presented  in Fig. 12(a),  which
is  based  on  the  integration  of  wireless  radio-frequency
modules  into  existing  SILs  that  emits  a  high-voltage  pulse
when contact is made with the wire mesh by migratory insects
with  phototaxic  [178],  [255].  The  implementation,  as  shown
in  the Fig. 12(b),  is  composed  of  four  main  modules:  a
ZigBee-based  module,  an  information  collection  module  that
uses  the  Raspberry  Pi  4B  model,  a  discharge  simulation
module,  and  a  SIL.  The  concept  allows  the  communication
and  the  coordination  between  them,  to  provide  accurate
information  on  ecological  data  needed  for  automatically
predicting  insect  disasters,  and  better  management  of  insect
migration. The implementation results indicated that when the
discharge  simulator  module  is  running,  it  causes  interference
during discharge with the ZigBee-based device,  which forces
the device to restart  in case of insects  are killed,  indicating a
more  severe  interference.  The  results  provided  very  valuable
insights,  in  particular  the  prohibition  of  deploying  such
devices  near  the  IoT  nodes  without  protection,  as  it  can  be
used to attack them, leading to an abnormal working state of
the whole IoT network [256].

A  major  challenge  for  SIL  deployment  is  the  complicated
geography  of  agricultural  land  and  its  associated  features,
including random edges and obstacles, an example of which is
provided by the authors and illustrated in Fig. 12(c), showing
a  real  agricultural  land  located  in  the  city  of  Babaiqiao,
Nanjing,  China,  together  with  its  map  diagram in Fig. 12(d).
The  SIL  deployment  problem  (SILDP),  which  is  the
duplication  rate  optimization  through  deploying  of  as  few
SILs  as  possible  while  maintaining  full  coverage,  has  been
addressed  in  [257].  The  authors  have  proposed  two  genetic

algorithm-based  methods,  namely  Independent  boundary
based  deployment  method  (IBDM)  and  separate  partition
based  deployment  method  (SPDM).  The  two  methods  share
the same optimization objectives but differ in the deployment
sequence. The experimental studies showed that these methods
offer  superior  performance  on  deployment  cost  (Fig. 12(e))
with 32 SIL nodes, compared to other peer algorithms (Fig. 12(f))
with 37 SIL nodes. 

VIII.  Discussion

IoT  technology  promises  a  broad  scope  of  possibilities  for
optimizing  production  in  agriculture.  The  integration  of
middleware,  fog/cloud  computing,  big  data  analysis,  SDN/
NFV,  and  AI  can  be  seen  in  recent  years,  as  these
technologies  are  essential  for  extending  the  functionalities.
The  IoT  has  widely  influenced  agriculture,  but  despite  its
advantages, several challenges need to be addressed. 

A.  Hardware Challenges
The  perception  layer  is  directly  affected  by  rough

environmental  conditions  like  intense  sunlight,  humidity,
strong  winds,  and  others  which  can  destroy  devices.
Equipment  must  remain  active  and  reliable  for  long  periods
while  relying on low battery power resources.  Also,  building
IoT  systems  in  open  fields  plantations  requires  a  lot  more
sensors  to  monitor  the  wild  environment,  as  well  as  the
growing  crops;  to  ensure  efficiency,  mobile  sensors  and
UAVs  have  great  potential  for  data  collection  in  the
agricultural  field.  The  fabrication,  delivery,  and  use  of  IoT
resources  is  usually  accompanied  by  higher  volumes  of  both
solid and toxic waste. G-IoT is a sustainable and more energy-
efficient model for the creation of products and services [85]. 

B.  Interoperability Challenges
This type of challenge can be viewed from different points

of  view,  such  as  hardware,  network  protocols,  syntax,
semantics,  and platforms heterogeneity. To communicate and
exchange  data  efficiently  between  different  infrastructures,
gateways,  virtual  networks,  networking  technologies,  open
application  programming  interfaces  (APIs),  service  oriented
architecture  (SOA),  semantic  web  technologies,  and  open
standards can be used based on their interoperability handling
techniques. Standards must be tailored to handle a wide range
of  implementations  that  satisfy  the  basic  specifications  for
IoT-related  applications.  Thus,  one  of  the  challenges  that
should attract more attention in the future is providing global
standardization frameworks for IoT-based agriculture. 

C.  Networking and Energy Management Challenges
Wireless  networks  have  low cost,  flexible  networking,  and

high scalability compared to wired networks. Still, due to field
changes  as  plants  grow,  background  noise  is  produced,
reducing the reliability of the data transmission. When a node
is  responsible  for  routing  the  communication  tasks  of  many
devices, and this node is disconnected from the network, it can
cause  a  partial  or  even  total  network  shutdown.  Improving
power  management  to  increase  the  resilience  of  IoT  devices
will increase the durability of applications, as one of the main
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factors limiting the lifetime of IoT installations is power drain.
Renewable  sources  of  energy  harvesting  solutions,  such  as
solar power and wind, could also be used in IoT-based smart
agriculture  systems.  Area  coverage  problems  is  among  the
most  critical  issues  in  IoT  based  systems.  LPWAN
technologies  can  solve  such  problems  thanks  to  their  long
communication  range.  However,  the  installation  cost  of
LPWAN base stations remains high. Metaheuristic algorithms

have been widely used for addressing the coverage problems.
Therefore, the question we ask here is: how do we choose the
right  algorithm  among  different  types?  We  believe  that  a
comparative  study  of  area  coverage  optimization  algorithms
for IoT-based agriculture is needed.
 

D.  Security and Privacy Challenges
Security and privacy issues are seen as critical challenges in
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agriculture  because  of  potential  losses.  Smart  agriculture  not
only has the same security problems as IoT security, privacy,
authentication,  and  access  control,  but  also  has  its  specific
issues such as information storage and management problems.
Frequent  security  issues  in  the  physical  layer  include  data
collection security and the physical security of the equipment.
While  fog  computing  brings  a  lot  of  benefits,  many  new
security  and  privacy  threats  are  emerging  that  did  not  exist
before.  For  example,  it  is  more  challenging  to  control  users'
privacy  in  a  decentralized  manner,  since  for  nodes  are
dispersed across broad surfaces.

Blockchain  technology  brings  significant  potential  for  real
improvements in supply chains, including transparency, secu-
rity, and, above all else, trust. But it has its proper limitations
such  as  scalability  and  energy-efficient  mining  issues  [17].
Big  agricultural  data  is  passed  to  the  application  layer,
including  agricultural  material  consumption,  information  on
fruit  and  vegetable  supply,  and  location  of  field  machinery.
Data  security  and confidentiality  must  be  taken into  account.
Encryption algorithms, intrusion detection systems (IDS), key
distribution  [258],  and  security  routing  policies  have  to  be
deployed with consideration of IoT end devices characteristics
of  weak  computing  power,  small  storage  space,  and  short
battery lifetime. 

E.  Hardware and Software Costs Challenges
Efforts to lower hardware and software costs in IoT implem-

entations, together with maximizing system performance, is a
major objective of researchers around the world. Even though
the costs of IoT platforms have reduced remarkably, the prices
of top-quality sensors and actuators are still  high. Costs need
to  be  reduced  more,  and  an  optimization  model  of  minimum
service costs needs to be implemented. 

F.  Education Challenges
Farmers  in  developing  countries  are  often  located  in  rural

areas  where  most  of  them  are  uneducated.  The  inability  of
information  utilization  by  such  farmers  could  be  a  major
obstacle  for  the  integration  of  IoT  and  other  technologies  in
agriculture. A possible research direction in this topic could be
related to developing smart farming education service for IoT-
based  agriculture  environment  to  ensure  that  farmers  receive
ongoing  training  in  order  to  keep  up  to  date  with  the  rapid
changes  in  technology  that  affect  farm  operations  from  farm
to fork. 

IX.  Conclusion

In this paper, we surveyed the emerging technologies for the
internet  of  things-based smart  agriculture.  We provided a list
of  emerging  technologies  for  agricultural  IoTs,  including
unmanned aerial  vehicles,  wireless  technologies,  open-source
IoT  platforms,  SDN  and  NFV  technologies,  cloud  and  fog
computing,  and  middleware  platforms.  Through  extensive
research  and  analysis  that  was  conducted,  we  were  able  to
classify  the  IoT  applications  for  smart  agriculture  into  seven
categories,  including  smart  monitoring,  smart  water
management,  agrochemicals  applications,  disease  manage-
ment,  smart  harvesting, supply chain management,  and smart

agricultural  practices.  Also,  we  analyzed  supply  chain
management  solutions  for  agricultural  IoTs  based  on
blockchain.  In  addition,  we  provided  real-life  smart  farming
projects  that  utilize  several  of  the  above  mentioned
technologies.  There  still  exist  several  challenging  research
areas,  such  as  hardware  boards,  interoperability  of  systems,
networking  and  energy  management,  security  and  privacy
threats,  hardware  and  software  costs,  and  education
challenges,  which  should  be  further  investigated  in  the  near
future.
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