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Agriculture plays a significant role in the economic sector. The automation in agriculture is themain concern and
the emerging subject across theworld. The population is increasing tremendously and with this increase the de-
mand of food and employment is also increasing. The traditional methods whichwere used by the farmers, were
not sufficient enough to fulfill these requirements. Thus, new automated methods were introduced. These new
methods satisfied the food requirements and also provided employment opportunities to billions of people. Ar-
tificial Intelligence in agriculture has brought an agriculture revolution. This technology has protected the crop
yield from various factors like the climate changes, population growth, employment issues and the food security
problems. This main concern of this paper is to audit the various applications of Artificial intelligence in agricul-
ture such as for irrigation, weeding, spraying with the help of sensors and other means embedded in robots and
drones. These technologies saves the excess use of water, pesticides, herbicides, maintains the fertility of the soil,
also helps in the efficient use ofman power and elevate the productivity and improve the quality. This paper sur-
veys the work of many researchers to get a brief overview about the current implementation of automation in
agriculture, the weeding systems through the robots and drones. The various soil water sensing methods are
discussed alongwith two automatedweeding techniques. The implementation of drones is discussed, the various
methods used by drones for spraying and crop-monitoring is also discussed in this paper.
© 2020 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Theworld's population is assumed to be nearly 10 billion by 2050,
boosting agricultural order-in a situation of humble financial devel-
opment by somewhere in the range of 50% contrasted with 2013
(FAO, 2017). At present, about 37.7% of total land surface is used
for crop production. From employment generation to contribution
to National Income, agriculture is important. It is contributing a sig-
nificant portion in the economic prosperity of the developed nations
and is playing an active part in the economy of the developing coun-
tries as well. The augmentation of agriculture has resulted in a signif-
icant increase in the per-capita income of the rural community. Thus,
placing a greater emphasis on agricultural sector will be rational and
apposite. For countries, like India, the agricultural sector accounts for
18% of GDP and provides employment to 50% of the country's work-
force. Development in the agricultural sector will boost the rural de-
velopment, further leading toward rural transformation and
eventually resulting in the structural transformation (Mogili and
Deepak, 2018; Shah et al., 2019).

With the advent of technology, there has been observed a dramatic
transformation in many of the industries across the globe (Kakkad
et al., 2019). Surprisingly, agriculture, though being the least digitized,
has seenmomentum for the development and commercialization of ag-
ricultural technologies. Artificial Intelligence (AI) has begun to play a
major role in daily lives, extending our perceptions and ability tomodify
the environment around us (Kundalia et al., 2020; Gandhi et al., 2020;
Ahir et al., 2020). Plessen (2019) gave a method for harvest planning
based on the coupling of crop assignment with vehicle routing is pre-
sented. With this emerging technologies the workforce which were re-
stricted to only a minimal industrial sectors are now contributing to
numerous sectors. AI is based on the vast domains like Biology, Linguis-
tics, Computer Science, Mathematics, Psychology and engineering. Jha
et al. (2019) a brief overview of the current implementation of agricul-
tural automation. The paper also addresses a proposed system for
flower and leaf identification andwateringusing IOT to be implemented
in the botanical farm (Patel et al., 2020; Albaji et al., 2010). The basic
concept of AI to develop a technology which functions like a human
brain (Parekh et al., 2020; Jani et al., 2019) This technology is perpe-
trated by studying how human brain thinks, how humans learn, make
decisions, and work while solving a problem, and on this ground intel-
ligent software and systems are developed. These softwares are fed
with training data and further these intelligent devices provide us
with desired output for every valid input, just like the human brain.
Vast domains including Machine Learning and Deep learning are core
part of AI (Patel et al., 2020a, 2020b; Pandya et al., 2019; Sukhadia
et al., 2020). While AI is the science of making intelligent machines
and programs,ML is the ability to learn somethingwithout being explic-
itly programmed andDL is the learning of deep neural networks (Kodali
and Sahu, 2016; Kulkarni and Deshmukh, 2013). Themain subjective of
AI is to make problem solving facile which may include the use of ANN
(Shah et al., 2020a, 2020b).
ANN is a processing algorithm or a hardware whose functioning is
inspired by the design and functioning of a human brain (Shah et al.,
2020a, 2020b). Neural networks have a remarkable ability of self-
organization, and adaptive learning. It has replaced many traditional
methods in numerous fields like Computer Science, Mathematics, Phys-
ics, Engineering image/signal processing, Economic/ Finance, Philoso-
phy, Linguistics, Neurology. ANN undergoes the process of learning.
Learning is the process of adapting the change in itself as and when
there is a change in environment. There are two learning techniques, su-
pervised learning and unsupervised learning. The work of Jha et al.,
2019, encloses the connected relations between the various embedded
systems and the AI technology coherent with the agricultural field, it
gave a brief about the various applications of neural networks, ML in
this sector for precision farming (Yang et al., 2007).

AI is an emerging technology in the field of agriculture. AI-based
equipment and machines, has taken today's agriculture system to a dif-
ferent level. This technology has enhanced crop production and im-
proved real-time monitoring, harvesting, processing and marketing
(Yanh et al., 2007). The latest technologies of automated systems
using agricultural robots and drones havemade a tremendous contribu-
tion in the agro-based sector. Various hi-tech computer based systems
are designed to determine various important parameters like weed de-
tection, yield detection and crop quality and many other techniques
(Liakos et al., 2018). This paper encompasses the technologies used for
the automated irrigation, weeding and spraying to enhance the produc-
tivity and reduce the work load on the farmers. Various automated soil
sensing techniques are discussed (Wall and King, 2004). Hemalatha and
Sujatha (2015) brought together temperature and moisture sensors to
close the loop holes of the vehicle predictions. The robots used in sens-
ing were localized by GPSmodules and the location of these robots was
tracked using the google maps. The data from the robots was fetched
through Zigbee wireless protocol. The readings were displayed on the
16 × 2 LCD display which was integrated to the LPC2148 microcontrol-
ler. The latest automated weeding techniques are discussed and the im-
plementation of drones for the purpose of spraying in the fields is
discussed followed by the types of sprayers utilized on UAVs. Further
speaking about drones, yield mapping and monitoring is discussed be-
ginning with the an outline of the yield mapping processs followed by
the programming of the software and briefing about the calculation as
well as calibration process. Finally the processing of these yield maps
is illuminated.

2. Impact of AI on agriculture

The technologieswhich are AI-based help to improve efficiency in all
thefields and alsomanage the challenges faced by various industries in-
cluding the various fields in the agricultural sector like the crop yield, ir-
rigation, soil content sensing, crop- monitoring, weeding, crop
establishment (Kim et al., 2008). Agricultural robots are built in order
to deliver high valued application of AI in the mentioned sector. With
the global population soaring, the agricultural sector is facing a crisis,
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but AI has the potential to deliver much-needed solution. AI- based
technological solutions has enabled the farmers to producemore output
with less input and even improved the quality of output, also ensuring
faster go-to- market for the yielded crops. By 2020, farmers will be
using 75 million connected devices. By 2050, the average farm is ex-
pected to generate an average of 4.1 million data pointsevery day. The
various ways in which AI has contributed in the agricultural sector are
as follows:

2.1. Image recognition and perception

Lee et al. (2017) said that in recent years, an increasing interest has
been seen in autonomous UAVs and their applications including recog-
nition and surveillance, human body detection and geolocalization,
search and rescue, forest fire detection (Bhaskaranand and Gibson,
2011; Doherty and Rudol, 2007; Tomic et al., 2012; Merino et al.,
2006). Because of their versatility as well as amazing imaging technol-
ogywhich covers from delivery to photography, the ability to be piloted
with a remote controller and the devices being dexterous in air which
enables us to do a lot with these devices, drones or UAVs are becoming
increasingly popular to reach great heights and distances and carrying
out several applications.

2.2. Skills and workforce

Panpatte (2018) said that artificial intelligence makes it possible for
farmers to assemble large amount of data from government as well as
public websites, analyze all of it and provide farmers with solutions to
many ambiguous issues as well as it provides us with a smarter way
of irrigationwhich results in higher yield to the farmers. Due to artificial
intelligence, farmingwill be found to be amix of technological aswell as
biological skills in the near future which will not only serve as a better
outcome in the matter of quality for all the farmers but also minimize
their losses and workloads. UN states that, by 2050, 2/3rd of world's
population will be living in urban areas which arises a need to lessen
the burden on the farmers. AI in agriculture can be applied which
would automate several processes, reduce risks and provide farmers
with a comparatively easy and efficient farming.

2.3. Maximize the output

Ferguson et al. (1991) said in his wok that Variety selection and seed
quality set themaximumperformance level for all plants. The emerging
technologies have helped the best selection of the crops and even have
improved the selection of hybrid seed choices which are best suited for
farmer's needs. It has implemented by understanding how the seeds
react to various weather conditions, different soil types. By collecting
this information, the chances of plant diseases are reduced. Now we
are able to meet the market trends, yearly outcomes, consumer needs,
thus farmers are efficiently able to maximize the return on crops.

2.4. Chatbots for farmers

Chatbots are nothing but the conversational virtual assistants who
automate interactions with end users. Artificial intelligence powered
chatbots, alongwithmachine learning techniques has enabled us to un-
derstand natural language and interactwith users in awaymore person-
alized way. They are mainly equipped for retail, travel, media, and
agriculture has used this facility by assisting the farmers to receive an-
swers to their unanswered questions, for giving advice to them andpro-
viding various recommendations also.

3. Robots in agriculture

Robotics and Autonomous Systems (RAS) are introduced in large
sectors of the economy with relatively low productivity such as Agri-
Food. According to UK-RAS White papers (2018) the UK Agri-Food
chain, from primary farming through to retail, generates over £108bn
p.a., and with 3.7 m employees in a truly international industry yielding
£20bn of exports in 2016. Robotics has played a substantial role in the
agricultural production and management. The researchers have now
started emphasizing on technologies to design autonomous agricultural
tools as the conventional farming machineries lacked in efficiency
(Dursun and Ozden, 2011). The main purpose of coming up with this
technology is to replace human labor and produce effective benefits
on small as well as large scale productions (Manivannan and
Priyadharshini, 2016). In this sector, the room for robotic technologies
has amplified productivity immensely (Pedersen et al., 2008). The ro-
bots are performing various agricultural operations autonomously
such as weeding, irrigation, guarding the farms for delivering effective
reports, ensuring that the adverse environmental conditions do not af-
fect the production, increase precision, and manage individual plants
in various unfamiliar ways.

The idea of coming up with such a technology came with the intro-
duction of a machine called Eli Whitney's cotton gin. It was invented in
1794 by U.S. - born inventor Eli Whitney (1765–1825), a device which
revolutionized cotton production by significantly accelerating the pro-
cess of extracting seed from cotton fiber.It created 50 pounds of cotton
in one day. Thus this gave birth to the autonomous agricultural robots.
A basic automated model was introduced to determine the actual posi-
tion of seeds (Griepentrog et al., 2005). Ultra high precision placement
of seed was also established. Mechanisms that ensure that the seeds
planted has zero ground velocity (Griepentrog et al., 2005). This is im-
portant as it ensures that the seed does not bounce from its actual posi-
tion after the soil impact. The status or the development of plant was
recorded by automated machines. Various biosensors were established
to monitor the plant growth and also to detect plant diseases (Tothill,
2001).The process of manual weeding was replaced by the laser
weeding technology, where a mobile focused infra-red light disrupts
the cells of the weeds, this beam was controlled by computers
(Griepentrog et al., 2006). For the effective use of water, automated irri-
gation systems were also established.

3.1. Irrigation

The agriculture sector consumes 85% of the available freshwater re-
sources across the world. And this percentage is increasing rapidly with
the population growth and with the increase in food demand. This
leaves us with the need to come up with more efficient technologies
in order to ensure proper use of water resources in irrigation. The man-
ual irrigationwhichwas based on soil watermeasurementwas replaced
by automatic irrigation scheduling techniques. The plant evapotranspi-
ration which was dependent on various atmospheric parameters such
as humidity, the wind speed, solar radiations and even the crop factors
such as the stage of growth, plant density, the soil properties, and pest
was taken into consideration while implementing autonomous irriga-
tion machines.

Kumar (2014) discusses about the different irrigation methods with
the primarymotive of developing a systemwith reduced resource usage
and increased efficiency. Devices like fertility meter and PH meter are
set up on the field to determine the fertility of the soil by detecting
the percentage of the primary ingredients of the soil like potassium,
phosphorous, nitrogen. Automatic plant irrigators are planted on the
field through wireless technology for drip irrigation. This method en-
sures the fertility of the soil and ensures the effective use of water
resource.

The technology of smart irrigation is developed to increase the pro-
duction without the involvement of large number of man power by de-
tecting the level of water, temperature of the soil, nutrient content and
weather forecasting. The actuation is performed according to themicro-
controller by turning ON/OF the irrigator pump. The M2M that is, Ma-
chine to Machine technology is been developed to ease the
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communication and data sharing among each other and to the server or
the cloud through the main network between all the nodes of the agri-
cultural field (Shekhar et al., 2017). They (2017) developed an auto-
mated robotic model for the detection of the moisture content and
temperature of the Arduino and Raspberry pi3. The data is sensed at
regular intervals and is sent to the microcontroller of Arduino (which
has an edge level hardware connected to it), it further converts the
input analog to digital. The signal is sent to the Raspberry pi3 (embed-
ded with KNN algorithm) and it sends the signal to Arduino to start
the water source for irrigation. The water will be supplied by the re-
source according to the requirement and it will also update and store
the sensor values. Jha et al. (2019) also developed an automated irriga-
tion systemwith the technology of Arduino for reducing themanpower
and time consumption in the process of irrigation.

Savitha and UmaMaheshwari (2018) also developed the idea of effi-
cient and automated irrigation system by developing remote sensors
using the technology of Arduino which can increase the production up
to 40%.

Another system for automated irrigationwas given by Varatharajalu
and Ramprabu (2018). In this approach different sensors were built for
different purposes like the soil moisture sensor to detect the moisture
content in the soil, the temperature sensor to detect the temperature,
the pressure regulator sensor to maintain pressure and the molecular
sensor for better crop growth. The installation of digital cameras. The
output of all these devices is converted to digital signal and it is sent
to the multiplexer through wireless network such as Zigbee and
hotspot.

The first techniquewas the subsurface drip irrigation process, which
minimized the amount of water loss due to evaporation and runoff as it
is directly buried beneath the crop. Later researchers came with differ-
ent sensors which were used to detect the need of water supply to the
fields as soil moisture sensor and rain drop sensor, which were
instructed through wireless broadband network and powered by solar
panels. The rain drop sensor and soil moisture sensor informs the
farmer about the moisture content in the soil through SMS in their cell
phone using GSM module. Accordingly the farmer can give commands
using SMS to ON and OFF the water supply. Thus we can consider that
this system will detect part or area in the fields which required more
water and could hold off the farmer from watering when it's raining.

Soil moisture sensors use one of the several technologies used to
measure the soil moisture content. It is buried near the root zones of
the crops (Dukes et al., 2009). The sensors help in accurately determin-
ing the moisture level and transmit this reading to the controller for ir-
rigation. Soil moisture sensors also help in significantly conserving
water (Quails et al., 2001). One technique of moisture sensors is the
water on demand irrigation in which we set the threshold according
to the soil's field capacity and these sensors permits your controller to
water onlywhen required.When the scheduled time arrives, the sensor
reads the moisture content or level for that particular zone, and
watering will be allowed in that zone only if the moisture content is
below the threshold. The other was the suspended cycle irrigation
which requires irrigation duration unlike the water on demand irriga-
tion. It requires the start time and the duration for each zone (Yong
et al., 2018).

3.1.1. Dielectric method
The moisture in the soil is calculated by the sensors which basically

evaluate the moisture content in the soil based on the dielectric con-
stant (soil mass permittivity) of the soil. The amount of irrigation
needed can also be determined on the basis of the dielectric constant
(Gebregiorgis and Savage, 2006). Kuyper and Balendonck (2001) pro-
poses an automated system that uses dielectric soil moisture sensors
for real time irrigation control. The measurement method based on
the dielectric properties is considered to be the most potential one
(Zhen et al., 2010). Hanson et al. (2000) gave the information regarding
how soil types affect the accuracy to dielectric moisture sensors. The
dielectric steady is only the capacity of soil to transfer power or electric-
ity. The soil is comprised of various parts like minerals, air and water,
subsequently the estimation of its dielectric consistent is determined
by the general commitment of every one of these segments. Since the
estimation of the dielectric value of water (Kaw = 81) is a lot bigger
than the estimation of this consistent for the other soil parts, the esti-
mated value of permittivity is primarily represented by the nearness
of moisture in the soil. One method to calculate the relationship be-
tween the dielectric constant (Kab) and volumetric soil moisture
(VWC) is the equation of Topp et al.:

VWC ¼ −5:3� 10−2 þ 2:29� 10−2Kab−5:5� 10−4Kab2 þ 4:3
� 10−6Kab3 ð1Þ

The othermethod used for determining the dielectric constant is the
by the Time Domain Reflectometry (TDR). It is determined on the basis
of the time taken by an electromagnetic wave to propagate along a
transmission line that is surrounded by the soil. As we probably are
aware, the propagation velocity (V) is an element of the dielectric con-
stant (Kab), therefore it is legitimately corresponding to the square of
the transmission time (t in a flash) down and back along the transmis-
sion line:

Kab ¼ c=vð Þ2 ¼ ctð Þ= 2Lð Þð Þ2 ð2Þ

where c is the speed of electromagnetic waves in a vacuum (3·108m/s
or 186,282 mile/s) and L is the length of the TL in the soil (in m or ft).

3.1.2. Neutron moderation
This is another technique for deciding the moisture content in the

soil. In this strategy fast neutrons are launched out from a decomposing
radio dynamic source like 241Am/9Be (Long and French, 1967) and
when these neutrons slam into particles having a similar mass as
theirs(protons, H+), they drastically slow down, making a “cloud” of
“thermalized” neutrons. As we already know that water is the primary
wellspring of hydrogen in soil, the thickness of thermalized neutrons
around the test is about corresponding to the division of water present
in the soil. The arrangement of the test is as a long and limited chamber,
comprising of a source and a finder. The estimations are taken in this
test by bringing the test into an entrance tube, which is as of now pre-
sented in the soil. One can decide soil amount of moisture in the soil
at various profundities by balancing the test in the cylinder at various
profundities. The moisture substance is gotten with the assistance of
this gadget dependent on a direct alignment between the check pace
of thermalized neutrons read from the test, and the soil moisture sub-
stance got from adjacent field tests.

The installation of sensors plays an important role in the efficient im-
plementation of irrigation robotics. One can use a single sensor to con-
trol the irrigation of multiple zones in the fields. And one can also set
multiple sensors to irrigate individual zones. In the first case where
one sensor is utilized for irrigating multiple zones, the sensor is places
in the zone which is the driest of all or we can say the zone which re-
quires maximum irrigation in order to ensure adequate irrigation in
the whole field. The placement of the sensors should be in the root
zoneof the crops (ensuring that there are no air gaps around the sensor)
from where the crops extract water. This will ensure the adequate sup-
ply of water to the crops. Later, we need to connect the SMS controller
with the sensor. The controller will control the working after the sensor
responds. After making this connection the soil water threshold needs
to be selected. Thenwater is applied to the areawhere the sensor is bur-
ied and it is left as it is for a day. The water content now is the threshold
for the sensor for scheduled irrigation as described earlier.

After fetching the data through the sensors the microcontrollers
come into work. It is themajor component of the entire automated irri-
gation process. The whole circuit is supplied with power up to 5 V with
the help of transformer, a bridge rectifier circuit (which is a part of
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electronic power supplies which rectifies AC input to DC output) and
voltage regulator. Then the microcontroller is programmed. The micro-
controller receives the signals from the sensors. The OP-AMP acts as an
interface between the sensors and the microcontroller for transferring
the sensed soil conditions. The irrigator pumps thus operates on the in-
formation of the soil properties at run time (Fig. 1).The irrigation pro-
cess can therefore be automated with the help of moisture sensors
and microcontrollers (Rajpal et al., 2011). (See Table 1.)

3.2. Weeding

Zimdahl (2010) in his report on “A History of Weed Science in the
United States” stated about Thomas K. Pavlychenko, a pioneer weed ex-
perimentalist, who did a study on the competition among plants. After
his detailed research on the same, he came concluded that the competi-
tion among the plants forwater beginswhen their roots in the soil over-
lap to absorb water and nutrients and weeds were the strongest
competitors for water. The water requirement for the aerial parts of
the plant is the number of pounds of water used to produce a pound
of dry matter. The wild mustard plant (Brassica kaber var. pinnatifida)
requires four times as much water as a well-developed oat plant, and
the common ragweed plant (Ambrosia artemisiifol ia) requires three
times asmuchwater as a corn plant to reachmaturity. One can calculate
the water requirement per acre is determined by multiplying the pro-
duction of the plant in pounds of dry matter per acre times the plant's
water requirement. Light is also an essential component for the growth
of the plants.Weedswhich grow tall, generally blocks thewayof light to
the plants. Sometimesweeds like green foxtail and redroot pigweed are
intolerant of shade but may times weeds like field bindweed, common
milkweed spotted spuroe, and Arkansas rose are shade tolerant. Accord-
ing to a study by researchers of the Indian Council for Agricultural Re-
search, the country India, loses agricultural produce worth over $11
billion — more than the Centre's budgetary allocation for agriculture
for 2017–18 annually due to weeds. So to remove these weeds from
the fields is of great importance otherwise it will not only occupy the
Fig. 1. (a) SoilWater Balance Components for EvapotranspirationModel Source: University ofM
Monteith method.
land space but will also adversely affect the growth of other plants
(Bak and Jakobsen, 2003).

Lie Tang et al. (2000) brought up a vision basedweed detection tech-
nology in natural lighting. It was created utilizing hereditary calculation
distinguishing a locale in Hue-Saturation-Intensity (HSI) shading space
(GAHSI) for open air field weed detecting. It utilizes outrageous condi-
tions like radiant and shady and these lightning conditions were
mosaicked to discover the likelihood of utilizingGAHSI to find the locale
or zones in the field in shading space when these two boundaries are
displayed at the same time. They came about given by the GAHSI gave
proof to the presence and severability of such a locale. The GAHSI execu-
tion was estimated by contrasting the GAHSI-portioned picture and a
comparinghand sectioned reference picture. In this, theGAHSI achieved
equivalent performance.

Before developing a weed control automated systemwe need to dif-
ferentiate between the crop seedlings and the weeds (Bhagyalaxmi
et al., 2016; Chang and Lin, 2018). Amethodwas applied for recognition
of carrot seedlings from those of ryegrass. Aitkenhead et al. (2003) im-
plemented this method by the simple morphological characteristic
measurement of leaf shape. This method has varying effectiveness
mostly between 52 and 75% for discriminating between the plants and
weeds, by determining the variation in size of the leaf. Another method
for weeding was implemented using digital imaging. This idea involved
a self-organizing neural network. But thismethod did not give appropri-
ate results which were expected for commercial purposes, it was found
that a NNbased technology already existedwhich allows one tofind the
differences between species with an accuracy exceeding 75%.

In the contemporary world many automated systems are developed
(See Table 2.) but earlier various physical methods were used which re-
lied on the physical interaction with the weeds. Nørremark and
Griepentrog (2004) proposed that weeding depends on the position
and the number of weeds. Classical spring or duck foot tines were
used to perform intra row weeding by breaking the soil and the inter-
face of roots by tillage and thus promote the witling of the weeds. But
this is not advisable method as tillage can destruct the interface
innesota (b) Flowchart for Evapotranspiration Reference (Jha et al., 2019) (c) FAOPenman-

Image of Fig. 1


Table 1
Summary of Irrigation Automation Using Various Artificial Intelligence Technologies.

No. Algorithms Method of
evapotranspiration
/
desired calculation

Other Technologies Advantages/Results References

1. PLSR and other regression
Algorithms

Evapotranspiration
model

Sensors for data collection, IOT
Hardware Implementation

Increased efficiency and economic feasibility Choudhary
et al. (2019)

2. Artificial Neural Network based control
system

Evapotranspiration
model

Sensors for measurement of
soil,temperature,wind speed, etc.

Automation Umair and
Usman (2010)

3. Fuzzy Logic FAO Penman-
Monteith method

– Optimization Kia et al.
(2009)

4. ANN (multilayer neural model),
Levenberg Marquardt, Backpropagation

Penman–Monteith
method

– Evaporation decreased due to schedule and
savings observed in water and electrical energy

Karasekreter
et al. (2013)

5. Fuzzy Logic – WSN, Zigbee Experimental results verification. Can be applied
to home gardens and grass

Al-Ali et al.
(2015)

6. ANN
Feed Forward, Backpropogation

– – Optimization of water resources in a smart farm. Dela Cruz
et al. (2017)

7. Fuzzy Logic Controller Penman–Monteith
method

Wireless sensors Drip irrigation prevents wastage of water and
evaporation

Anand et al.
(2015)

8. Machine Learning algorithm – Sensors, Zigbee, Arduino
microcontroller

Prediction and tackles drought situations Arvind et al.
(2017)

63T. Talaviya et al. / Artificial Intelligence in Agriculture 4 (2020) 58–73
between the crop and the soil. Thus, further no contactmethods like the
laser treatments (Heisel et al., 2001) and micro spraying, which do not
affect the contact between the roots and the soil was developed. Nakai
and Yamada (2014) explained the method of the use of agricultural ro-
bots for the suppression of weeds and developing methods of control-
ling the postures of robots in case of uneven fields in the rice
cultivation. It used the method of Laser Range Fielder (LRF) for sup-
pressing the weeds and controlling robot's posture. Åstrand and
Baerveldt (2002) presented a robotic weed control system. The robot
was embedded with different vision systems. One was the gray- level
vision which was used in developing a row structure in order to guide
the robot along the rows and the other vision was color-based which
was most important and used to differentiate a single among the
weeds. The row recognition system was developed with a novel algo-
rithm with an accuracy of ±2 cm. The first trial of this system was im-
plemented in a greenhouse for weed control within a row of crops.
The same technology was mentioned in the research done by
Fennimore et al. (2016). The vision based technologies which were
used to guide the robots along the row structure to remove weeds and
to differentiate the single crop among the weed plants. The various
weeding systems are:

3.2.1. Chemical based
In this technology, the system consisted of 8 nozzles at the back

which were used for spraying herbicides. The whole system divided
Table 2
Summary of applications of AI in weeding operations.

No. Application Crop Algorithms for Weed Detection

1. Precision Weed
Management

Pepper plants,
artificial plants

Machine Vision, Artificial Intelligence

2. Autonomous Weeding
Robot.

Sugar beet Machine vision algorithm

4. Weeds Detection in
Agricultural Fields

– Data augmentation for image preproce
Convolutional neural networks for wee

5. Robot for weed control Sugar Beets Machine Vision

6. Weeding Robot Rice –

7. Weed Prevention
Robot

Rice –

8. Weed Detection Sugarcane Color Based and Texture Based algorith
Identification; Fuzzy Real Time Classifie

9. Weed Control System Lettuce Machine Vision

10. Robotic Weed Control Cotton Machine Vision algorithm based on Ma
morphology
the images captured in 8 × 18 small rectangles or we can say blocks,
each of these blocks covered an area of 8128 sq. mm. Later, each row
which consisted of these blocks corresponding to number of nozzles
was examined and processed one after the other. After examining the
blocks, each box containing weeds are sprayed.

On can also divide the images into 16 × 40 blocks, in this case each
blocks covers an area of approximately 8768 sq. mm. Thus, in this case
we need 16 nozzles instead of 8. The further processing, that is, the
task of spraying was done on the basis of the conditions mentioned.
The conditions are:

1. 1 If the block examined consisting of weed pixels exceeding 10% of
the total area of the block, then it is categorized into a weed block.

2. 2 All the blocks examined are sprayed with herbicides.
3. 3 Then after these two conditions, the weeds whose area equal to or

more than 30% is sprayed are supposed to be destroyed.
4. 4 The herbicide which is sprayed in this method is a selective herbi-

cide, which destroys only the weeds and not the other plants.

The first two conditions mentioned above defines the where
the herbicides are to be sprayed, that is, defines the areas which
requires spraying. The first condition mentioned reduces the
areas which contains very small amount of weeds and which
does not require spraying. This is an important part of weeding.
To destroy weeds, all the parts of the weeds does not require
Weed Removal Methods Accuracy Reference

A smart sprayer – Partel et al.
(2019)

High power lasers for
intra-row weeding proposed.

– Bakker et al.
(2006)

ssing;
d detection Herbicide Spray

70.5% Ngo et al. (2019)

Rotatory hoe/ Mechanical
removal

92%
(detection)

Åstrand and
Baerveldt (2002)

Motion of robot prevents weed
growth

– Nakamura et al.
(2016)

Motion of robot – Maruyama and
Naruse (2014)

ms; Greenness
r

Robotic arms for mechanical
removal

92.9% Sujaritha et al.
(2017)

Electrical Discharge 84%
(detection)

Blasco et al.
(2002)

thematical Chemical spraying 88.8%
sprayed

Lamm et al.
(2002)
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spraying, but only spraying enough areas is important as when
spraying is done on one part of weeds it is absorbed by different
parts of the weeds ultimately destroying the weeds. But one
needs to take care that enough areas in a weed are sprayed be-
cause if the sprayed areas are too small then, in that case the
weeds may not destroy. Thus we define a minimum spraying
area in the condition 3.The defined condition 4 is there to calculate
the reduction in the amount of herbicides used as compared with
the spraying in the overall area. The evaluation of this weeding
method requires the calculation of the destroyed weed rate, the
correct spray rate, the false spray rate and the herbicide reduction
rate. The following data is to be calculated as follows:

Destroyed weed rate ¼ NK=NWð Þ � 100

Correct spray rate ¼ NCSR=NSNWBð Þ � 100

False spray rate ¼ NFSB=NSBð Þ � 100

Herbicide reduction rate ¼ 1−NSB=NBð Þ � 100

Here NK is the number of weeds killed, NW is the total number of
weeds in the block, NCSB is the number of sprayed weed blocks, NFSB is
the number of sprayed non-weed blocks, NSB is the total number of
sprayed blocks and NB is the total number of blocks examined.

3.2.2. Pulse high voltage discharge method
There is an increase in the desire to implement non-chemical

weedingmethods as the pressure to reduce chemical costs on the en-
vironment and farming increases. The interest in organic farming has
also led to the rise in interest of non-chemical weed management
(Bond and Grundy, 2001). Non-chemical weed control methods
were studied (Parish, 1990) and include mechanical, electrical, and
biological methods. The pulse high voltage discharge method is one
such non- chemical weed control method that was implemented
mainly to destroy small weeds. These small weeds (of an approxi-
mate size of about 5 cm tall and stem diameter of about 2 mm) can
be destroyed with just one spark with energy of 153 mJ and a
15 kV. Whereas the large weeds (which vary in size from about
80 cm to 120 cm tall and a stem diameter of about 10–15 mm) can
be destroyed with a charge of 20 Hz. Because of these spark charges,
the stem and the roots of the weeds gets adversely affected, thus
leading to a disruption in the transportation of waiter to the various
parts of the weeds. Thus, the weeds wilt within a few days after the
spark. In this weeding method, spark discharging devices are set up
on the system in place of the nozzles in the previous chemical
based method. Here the system is designed to apply spark only on
the areas where weeds are detected. Once the sites having weeds
are detected, the selection of weed points is done by the system for
spark discharge, these weed points represent the weed areas. Like
the above discussed chemical method, in this method also some con-
ditions are defined. The conditions are as follows:

1. The average of all the coordinates of the pixels in the images is calcu-
lated and it is defined as the center of that region.

2. The spark discharge applied for weeding is applied at this center.
3. If a weed receives the spark discharge, then that particular weed is

considered as destroyed.

The first two conditions are established in order to select the spar
discharging points in the fields and the third condition is for setting
the potential of weed destruction. In this method some more factors
are evaluated along with the three factors calculated in the previous
method, the correct spark rate and the false spark rate.

Correct spark rate ¼ NCSK=NSKð Þ � 100
False spark rate ¼ NFSK=NSKð Þ � 100

Here NCSK is the number of sparked weed pixels, NFSK is the number
of sparked non-weed pixels and NSK is the total number of sparked
points.

4. Drones in agriculture

Unmanned aeronautical vehicles (UAVs) or unmanned ethereal
frameworks (UAS), otherwise called automatons, in a mechanical set-
ting are unmanned aircrafts that can be remotely controlled (Mogli
and Deepak, 2018). They work in confluence with the GPS and others
sensorsmounted on them.Drones are being implemented in agriculture
for crop health monitoring, irrigation equipment monitoring, weed
identification, herd and wildlife monitoring, and disaster management
(Veroustraete, 2015; Ahirwar et al., 2019; Natu and Kulkarni, 2016). Re-
mote Sensingwith the use of UAVs for image capturing, processing, and
analysis ismaking a huge impact on agriculture. (Abdullahi et al., 2015).
The rural business appears to have grasped ramble innovation with
great enthusiasm, utilizing these propelled instruments to change cur-
rent agriculturalmethods (Pederi and Cheporniuk, 2015). The complete
addressable estimation of automation fueled arrangements in every sin-
gle relevant industry is critical –more than USD 127 billion, as indicated
by an ongoing PwC analysis. They can be contrasted with a normal sim-
ple to use camera for unmistakable pictures, yet while a standard cam-
era can give somedata about plant development, inclusion and different
things, a multispectral sensor extends the utility of the procedure and
enables farmers to see things that can't be found in the noticeable
range, for example, moisture content in the soil, plant health monitor-
ing. These could help defeat the different restrictions that obstruct
agrarian production. The development of the UAS is incorporated with
Wireless Sensor Networks (WSN). The data recovered by the WSN en-
ables the UAS to advance their utilization for instance to restrict its
spraying of synthetic compounds to carefully assigned regions. Since
there are abrupt and continuous changes in ecological conditions the
control circle must almost certainly respond as fast as could reasonably
be expected. The reconciliation with WSN can help toward that path
(Costa et al., 2012). In precision agriculture, UAVs are mainly applicable
for agriculture operations such as soil and field analysis (Primicerio
et al., 2012), crop monitoring (Bendig et al., 2012), crop height estima-
tions (Anthony et al., 2014), pesticide Spraying (Faiçal et al., 2017; Faiçal
et al., 2014a, b, c; Huang et al., 2009). (See Table 4.) However, their hard-
ware implementations (Maurya, 2015) are purely adherent on critical
aspects like weight, range of flight, payload, configuration and their
costs. A research involving technologies, methods, systems and limita-
tions of UAVs are examined (Huang et al., 2013). About more than
250 models are analyzed as well as summarized in order to choose an
appropriate UAV in agriculture (S.R. Kurkute et al., 2018) (See
Table 3.). The agricultural drone market is expected to grow over 38%
in coming years. It is believed that the need for efficient agriculture is
only going to become more important due to increasing population
levels and changing climate patterns (Puri et al., 2017).

4.1. Crop spraying

The UAVS, otherwise called drones, are chiefly established on the in-
novations of sensors and microcontrollers which are grown especially
with an expectation to make up for the nonattendance of the pilot and
accordingly empower the trip of unmanned vehicles and their indepen-
dent conduct (Spoorthi et al., 2017). These drones have been utilized as
substance sprayers by farmers since numerous years now and they are
considered as effective and of great importance in the situations of
cloudy climate and has also solved the problem of inaccessibility to a
field of tall crops, for example, maize (Sugiura et al., 2005; Simelli and
Tsagaris, 2015). Additionally, they are likewise accepted to have a



Table 4
Summary of various applications of drones in agriculture.

No. Application Technologies/algorithms used Results Reference

1. Pesticide Spraying Wireless Sensor Networks,
Gyroscope and Accelerometer
sensors

N/A Garre and Harish
(2018)

2. Crop Monitoring,
Mapping, and
Spraying

DJI Phantom 3 Advanced UAV
and other softwares

UAVs could be used in order to detect abnormalities and identify potential problems. Psirofonia et al.
(2017)

3. Crop Monitoring Multispectral sensor Linear regressions between NDVI and plant nitrogen, aerial biomass, etc. were significant.
This has the potential to provide insight to good management practices and techniques.

Vega et al. (2015)

4. Pesticide Spraying Spray motor Worked satisfactorily when tested on groundnuts and paddy crops Yallappa et al.
(2017)

5. Remote Sensing Multispectral camera The UAV remote sensing system was tested on a turf grass field and was capable of
monitoring the temporal changes in the field.

Xiang and Tian
(2011)

6. Remote Sensing Spectral Spatial classification,
Bayesian information criterion
(BIC)

Manual Tomato detection is difficult so using this technology, the areas could be classified
into tomato and non tomato regions. Detection was carried out successfully on two
representative images.

Senthilnath et al.
(2016)

7. Crop Monitoring Hyperspectral Frame Camera Camera flight campaign successfully delivered the hyperspectral data. This enables the
monitoring of the leaf nitrogen concentration in rice.

Zheng et al. (2016)

8. Crop Monitoring Camera and Softwares Accurate way to monitor various aspects of the farm like creating digital map of field,
detecting problems with crop health, etc.

Reinecke and
Prinsloo (2017a,
2017b)

9. Precision
Agriculture
Monitoring

– Provides an approach for the segregation of sparse and dense areas within a sugarcane
field.
It makes use of satellite data. Accuracy was 87% for testing.

Murugan et al.
(2017)

10. Spraying Fertilizers
and Pesticides

Accelerometer and Gyroscope
Sensors, Arduino

It has the ability to reduce time and human effort. Pharne et al.
(2018)
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solid favorable position contrasted with satellite airborne sensors of
high picture resolution (Jannoura et al., 2015; Simelli and Tsagaris,
2015). Giles et al., 1987 retrofitted an air-carrier plantation sprayer
with a microcomputer based sprayer control framework. A foliage vol-
ume estimation framework, in view of ultrasonic range transducers
was interfaced to a PC which controlled the 3-nozzle manifolds on
each side of the sprayer by the utilization of control calculations depen-
dent on the amount of spray deposited. Kale et al. (2015) utilized drones
for spraying synthetic substances on the yield where the drones are
joined to actualize a control circle for horticulture applications. These
drones were implemented with sensors conveyed on the crops in the
field known as remote sensor networks (WSN) which controlled the
way toward applying the synthetic compounds. The data recovered by
these remote sensors limited drones to spray the synthetic substances
only into the assigned regions. Huang and Reddy (2015) built up a
low volume sprayer for an unmanned helicopter. The helicopter utilized
in this investigation has a principle rotor distance across of 3 m and a
most extreme payload of 22.7 kg. For like 45 min one gallon of gas
was involved. This technique and the systematic outcomes from this
methodology gives a precursor that could be utilized in creating UAV
flying application frameworks for higher yields which has a higher tar-
get rate and bigger VMD droplet size.

Xue et al. (2016) built up an unmanned airborne vehicle based pro-
grammed flying praying framework. The framework utilized a pro-
foundly coordinated and ultra-low power MSP430 single-chip
miniaturized scale PC with a free practical module. This permitted
course was programmed to coordinate the UAV for spraying at the
Table 3
Classification of Drones for Agricultural Application.

UAV ROTARY WINGS FIXED WINGS

Flight duration Fly upto 20 min Fly up to an hour
Wind pressure Can be flown from in winds

gusting from 20 to 50 mph
Fly in and out of the wind for
satisfactory images

Flexibility in
changing
direction

Allow new direction during
flight for re-direction

Allow new direction upload
during flight for re-direction

Price range $500 to $100,000 $500 to $100,000
Deployable
option

Highly deployable Highly deployable
required or the desired areas on the fields. The spray consistency for
these UAV tests was better than the Standard Requirement for ultra-
low volume spraying variety coefficient. Zhu et al. (2010) developed a
PWM Precision Spraying Controller for Unmanned Aerial Vehicles.
This paper shows another Pulse Width Modulation (PWM) controller
for Unmanned Aerial Vehicle (UAV) accuracy sprayer for farming utiliz-
ing a TL494 fixed-recurrence beat widthmodulator together with an in-
formation obtaining board and created programming. A UAV can be
remotely controlled or automated by pre-modified flight plans. There-
fore to this examination, PWM controller develops as a high exactness
system for the spraying applications. Zhang et al. (2015) assessed pow-
erful swath width and bead circulation of aeronautical showering
frameworks on M-18B and Thrush 510G planes. In this examination
they assessed the powerful swath width and consistency of the droplet
dispersion of two agrarian planes, M-18B and Thrush 510G, which flew
at 5 m and 4 m tallness, individually. The consequence of this examina-
tion expresses that the flight stature prompts the distinction in swath
width for both the farming planes.

The sprayer is the one which crumbles the sprayed liquid which is
possibly a suspension, an emulsion or an answer into tiny drops and
launch it with negligible power for circulating it appropriately
(Nørremark et al., 2008). It is additionally in charge of the guideline of
the measure of pesticide in order to maintain a strategic distance from
extreme application. Intemperate use of pesticidesmay demonstrate in-
efficient or harmful to the dirt too the yield. Likewise, the residue defi-
nitions of pesticides are disseminated with the assistance of dusters.
Based on vitality required to atomize and to toss out the shower liquid,
sprayers are arranged into four categories namely: The hydraulic energy
sprayer, the gaseous energy sprayer, the centrifugal energy sprayer and
the kinetic energy sprayer (Fig. 2).

4.1.1. Hydraulic energy sprayer
In Hydraulic Energy Sprayer, the material to be sprayed is pressur-

ized up to 40–1000 psi in any of the two potential ways. Either straight-
forwardly by utilizing a positive uprooting siphon or by utilizing a
vacuum apparatus which will make the gaseous tension over the
showermaterial noticeable all around tight holder. This pressurizedma-
terial is shot out through the splash spout. Here, the siphon supplies the
vitality which conveys the material to the plant foliage. Water driven
Sprayers produce a splash with most beads in the 200–400 μm width



Fig. 2. Types of agricultural drones.
Source: modern agriculture drones (Unpaprom et al., 2018).
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extend. As the beads framed are very little the structure a fog or haze
which results in uniform inclusion and better contactwith the bug or ill-
ness. In spite of the fact that, if the beads are little, they will in general
vanish immediately when the mugginess is low and probably won't ar-
rive at the objective. A water driven sprayer contains the accompanying
parts: tank, siphon with instigator, weight measure, controlling valve,
help valve, control valves, funneling and spouts, control source and bol-
ster outline.

4.1.2. Gaseous energy sprayer
In Gaseous Energy Sprayer a blower produces a high speed air

stream. This air stream is coordinated through the pipe toward the fin-
ish of which spray liquid will be available which will be permitted to be
streamed by the activity of gravity through a diffuser plate. A fluid or
residue is sustained into air stream to be conveyed to the objective.

4.1.3. Centrifugal energy sprayer
The Centrifugal Energy Sprayer consists of a fast turning devise, for

example, level, a concave or a convex plate, a wire mesh cage or a
bucket, a puncture strainer or chamber or a brush. At the focal point of
this gadget, the shower liquid is nourished under low weight which is
additionally atomized by diffusive power as it leaves the outskirts of
the atomizer. The droplets are conveyed by the air stream created by
the blower of the sprayer or by the common breeze, if the sprayer
isn't furnished with a fan.

4.1.4. Kinetic energy sprayer
In Kinetic Energy Sprayer the spray liquid streams by gravity to a vi-

brating or swaying spout which delivers a coarse fan like spray design.
This is explicitly utilized for the spraying of herbicides.

The spray effectiveness of any of the above utilized showers can be
determined by utilizing the equation given underneath:

Spray proficiency %ð Þ ¼ Minimum spray volume required� 100%

The plant foliagewhich is tainted by a pest orweed or any other rea-
son has to be sprayed. The regionwhich is required to be sprayed differs
with separation between the lines of plants, separation between the
plants in a similar line just as the development of the harvest. In addi-
tion, it is important to complete sprayer alignment practice before
embraced real spraying work to guarantee uniform use of pesticides
on the yields. We can process the spraying volume by utilizing the
formula:

Application Rate in Liter per Acre or Hecter
¼ ðConstant fig:495 or 600 British Matric

�Nozzle Discharge Rate in Liter every MinuteÞ
=ðEffective Swath Width in Feet or Meters
�Spraying speed in Mile or Kilometer every hourÞ

Pesticides are for the most part connected on the objective of the
sprayed droplets which comprises of both, fine and coarse drops. They
are characterized in term of their distance across and thickness on the
objective. In fact, nowand again the objective leaf areawhich is required
to be secured might be a lot more prominent than the ground region.
The Leaf Area Index (LAI) is the proportion of Leaf Area to Ground
Area. LAI tents to shift with various yields and only from time to time
surpasses around 6–7. Henceforth this is the reason behind per section
of land requirement ofwater in a sprayer changing fromharvest to yield
contingent on the complete leaf territory to be secured. However nu-
merous advances are being made in the sprayers which are to be uti-
lized alongside the UAVs which give high inclusion also is effective
spraying.

4.2. Crop monitoring

The advanced sensors and imaging capabilities have provided the
farmers with many new ways to increase yields and reduce crop dam-
age (See Table 5.). Unmanned airplanes which are used for practical
purposes in recent years have taken a bizarre flight. New sensors
mounted on UAV, with high-tech cameras being the eyes of the client
on the ground and optimal procedures for survey, data acquisition and
analysis are continuously developed and tested. As a matter of fact,
the use of aerial surveys is not new to the agricultural world. Satellites
have been used for a decade to inspect large croplands and forestry
but a new level of precision and flexibility has been obtained with the
use of UAVs. To carry out UAV flights, one does not need to depend on
the position of the satellite or having the correct weather conditions
and as UAV pictures are taken 400–500 ft. from the ground level, they
result in better quality and provide precision.

Image of Fig. 2


Table 5
Summary of the literature of the weeding, soil moisture detection, spraying and crop yield monitoring.

Sr
no.

Function Method Description Challenges and future scope References

1. Weeding Bradley
Method

The Bradleys used their approach to successfully
remove weeds in Ashton Park, part of Sydney
Harbor National Park, NSW, from a 16-hectare
(40-acre) reserve.

The word ‘bush regeneration ‘currently includes
practices other than weed removal, such as
replanting and adding species to an
environment where soil, water, or fire regimes
have transferred the correct type of plant to the
region.

Buchanan (1989).

2. Weeding Computer
vision assisted
system

The mechanically weeding actuator consists of
an integrated servo motor coupled with the
computer vision aided system to detect plant
sites and direct the weeding actuator to perform
mechanical weeding operations without
harming crops.

The accuracy of the system is found to be 93.6%
using haar cascade classifier using OpenCV open
source framework. Hence, it can be continued
using in future.

Nanda and Reddy (2018)

3 Soil
moisture
detection

Moisture
Analyzers and
METTLER
TOLEDO

Precise temperature control with halogen
heating technology and outstanding weighing
technology

Robust construction, built-in performance tests
and a comprehensive service offering

(Hanson et al., 2007)

4 Spraying Telerobotic
navigation and
target
selection

Targeted selection focuses on the development
of a user interface suitable for targeted spraying,
while simultaneously telerobotic navigation
acknowledges the robot along the rows, so the
farmer will be at a safe place away from
hazardous materials during the spraying
process.

Operator has to guide the robot in any given
environment; it may be harsh, mild, etc. Aims to
develop further for making it applicable in
AgriRobot Project.

George Adamides et al. User
Interface Design Principles for
Robotics in Agriculture: The Case of
Telerobotic Navigation and Target
Selection for Spraying

5 Spraying Filter-paper
ratio assured
methods for
spraying
droplets

In this method, the spraying droplet is measured
through filter paper ratio-assumed titration,and
works out the corresponding function
relationship between the diameter of coloured
spots and diameter of liquid drops with
regression analysis

Provides simpler way for gathering data,
sampling, measuring spraying droplet and
research on new type of plant protection
machine.

Chen Zhenyu et al. (1996) Shang
et al. (2004)

6 Crop Yield
Monitoring
Systems

Grain flow
sensors for
crop yield
monitoring

It includes mass flow and volume flow methods
which are located below the pivoted auger
under the grain tank and in the middle of the
elevator respectively. Mass flow methods use
weighing type, impact-type, and
radiometric-type units while Volume flow
methods include paddle wheel type and optical
type units.

Design and fabrication of any particular crop
might be affected by the sensing approach
which is employed. Signal processing as well
correction approaches should be implemented
for accurate monitoring

Sun-Ok-Chung et al. (2016)
Kormann et al. (1998)
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ERHunt et al. (2005) evaluated Digital Photography fromModel Air-
craft for Remote Sensing of Crop Biomass and Nitrogen Status. In their
examination, they advanced an aerobatic model airplane for capturing
images utilizing a buyer arranged computerized camera and the hued
canvases were utilized to adjust the images. They watched huge con-
trasts in computerized number (DN) for a similar reflectance and that
was a result of contrasts in the introduction settings chosen by the ad-
vanced camera. Further they utilized Normalized Green–Red Difference
Index (NGRDI) and directly related it to the standardized contrast of the
green and red reflectances, individually. The aftereffects of this investi-
gation mirrored that for soybeans, horse feed and corn, dry biomass
from zero to 120 g·m−2 was straightly corresponded to NGRDI, how-
ever for biomass more noteworthy than 150 g·m−2 in corn and soy-
bean, NGRDI did not increment further. Sun et al. (2010)
demonstrated the achievability of utilizing a continuous kinematic
(RTK) worldwide situating framework (GPS) to consequently delineate
area of transplanted column crops. They utilized a positive-situation
vegetable harvest transplanter retrofitted with a RTK GPS recipient,
plant, tendency, and odometry sensors, and an on-board ongoing infor-
mation lumberjack for transplant mapping in the field during planting.
Field test outcomes demonstrated that the mean blunder between the
plant map areas anticipated by the planting information and the over
viewed areas in the wake of planting was 2 cm, with 95% of the antici-
pated plant areas being inside 5.1 cm of their real areas. Sonaa et al.
(2016) showed UAV multi spectral overview to guide soil and harvest
for exactness cultivating applications. Multi spectral andmulti temporal
orthomosaics were delivered over a test field, which was a
100 m × 200 m plot inside a maize field, to delineate and soil files,
just as yield statures, with reasonable ground goals.
A low cost multispectral imaging system was designed and devel-
oped for application to crop monitoring (De Oca et al., 2018). It consists
of a microcontroller along with two cameras embedded into the drone.
One camera is sensitive to Infrared radiation while the other is a com-
mon RGB camera. This system provides images and information which
are used by a software to compute the NDVI and subsequently the
health status of a crop.

Reinecke and Prinsloo (2017a, 2017b) studied the benefits of drones
in agriculture, and their limitations, illustrating from examples how
drones operate on farms. They discussed different features of deones
and specifically how they assist farmers in maximizing their harvest
by detecting problems early, and managing the crops by using specific
cameras to detect pests andwater shortages. (S. Nema et al., 2018) per-
formed a detailed study on Spatial Crop Mapping and Accuracy Assess-
ment Using Remote Sensing and GIS in Tawa Command. They did
special cropmapping using satellite Landsat * data for Hoshangabad dis-
trict of Madhya Pradesh and also carried out a Satellite data classifica-
tion accuracy which resulted in overall accuracy as 87.60%.

4.2.1. Yield mapping and monitoring
One of the key segments of the unprecedenting progressions in ex-

actness cultivating frameworks, yield mapping, enables the farmer to
see spatial variety over the field perceiving zone for future activities
and outcome of the past sessions, management. It alludes for the most
part to the way toward gathering geo-referenced information on har-
vest yield and qualities, for example, showing in-field fluctuation, and
the soil moisture content of the yield giving a benchmarking apparatus,
when the yield is being harvested. In combination with soil examining
data, yield maps empowers the arrangement of variable compost
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maps which considers soil supplement levels just as the supplement
whichwas expelled in the collected harvest. Last result of yieldmapping
is typically a tonal or shaded guide showing scopes of yield inside a field.
Fundamental segments of grain yield mapping framework incorporate
grain fow sensor (determines grain volume gathered), grain moisture
content sensor (remunerates for grain moisture variability), GPS an-
tenna (receives satellite sign), Yield screen show with a GPS receiver
(geo-reference and records information), header position sensor(distin-
guishes estimations logged during turns), travel speed sensor (deter-
mines the separation the join goes during a specific logging interim)
(Fig. 3).

4.2.2. Programming of the software
For yield mapping, there are basically 5 errands which are to be

managed; information procurement, information preparing, LCD
displaying b contact screen info and information sparing. The details
of each one of them can be alluded from the Fig. 4:

These 5 undertakings inside and out, structures in performing vari-
ous tasks sometimes bring about clashes. Predominantly these conten-
tions are identified with the time arrangement. To conquer these
Fig. 3. Yield mapping devices - (a) diagram (b) (Plant et al., 2000) (c) yield
contentions and to mull over every one of the undertakings we utilize
four interfere with wellsprings of P80C592 in the framework, which
are the clock intrude on source, the outer intrude on source, the ADC
end-of-transformation intrude on source and the UART sequential I/O
port intrude on source.

4.2.3. Yield calculation and calibration
Yield is characterized as harvest weight (lbs for cotton) or volume

(bu for grains) reaped per unit region, which is in a roundabout way es-
timated by the yield sensor stream rate/(speed x swath width). Yield
stream rate is commonly determined each 1–2 s during collecting. The
begin and end times for each line pass are balanced relying upon the
measure of time the harvest takes to travel through sifting, isolating,
and cleaning to the area of the yield sensor. The deferrals for beginning
of-pass and end-of-passwill rely upon the yield and speedof the consol-
idate. Scientific interjection systems have been utilized to expel com-
motion because of blunders and regular spikes in the crude sensor and
area information (Searcy et al., 1989; Birrell et al., 1996).

Yield is by implication estimated as amass power or volume estima-
tion by the yield sensors. Presently the yield count needs to join an
mapping harvester equipped to do both tasks (Kormann et al., 1998).

Image of Fig. 3


Fig. 4. Yield Mapping (a) Sensing for yield (Source: Utah State University) and (b) example of raw yield map versus interpolated yield map using GIS (Source: Cillis et al., 2018).
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adjustment factor because of the way that the yield figuring that
changes over to weight relies upon the harvest. To acquire an exact
yield information a legitimate sensor alignment is imperative. Contrast-
ing the scale loads of four with five burdens with the determined yield
decides an alignment bend. Yield sensors ought to be recalibrated as fac-
tors change, for example, dampness substance or half breed. However,
utilizing the Yield Sense screen evacuates the requirement for recalibra-
tion after the underlying alignment toward the start of the period (Pre-
cision Planting).

4.2.4. Processing yield maps
With the utilization of a Geographic Information System (GIS) pro-

gramming, the yield determined at each field area can be shown. The
raw log document, contains focuses which are recorded during turns
and as the grain move through a consolidate is a deferred process (un-
less ongoing amendment is connected), the sensor estimations neglect
to compare to the careful gather areas. To dispense with these conspic-
uous mistakes, the crude information is moved to make up for the join-
ing delay. Increasingly finished, the focuses which compare to the
header up position are evacuated. Settings for grain stream postpone-
ment are join and some of the time even harvest explicit, yet run of
the mill esteems for grain yields extend from around 10 to 12 s.

Typically a couple of focuses toward the start and toward the finish
of a pass ought to be expelled too. These focuses are alluded to as
begin and end-pass delays. Begin pass postponements happen when
the grain stream has not balanced out in light of the fact that the lift is
bit by bit topping off yet the consolidate begins gathering the yield.
Thus, end-pass deferrals happen when the join moves out of the yield
and grain stream progressively decreases to zero when the lift is totally
exhausted. Moving of raw information to address for grain stream
postponement and exclusion of focuses that speak to header status up
and begin and end-pass deferrals is the essential information separating
method incorporated with programming provided with yield mapping
frameworks.

5. Challenges and future scope

Agriculture has been tackling significant difficulties like absence of
irrigation system, change in temperature, density of groundwater,
food scarcity andwastage and substantiallymore. The fate of cultivating
depends to a great extent on reception of various cognitive solutions.
While large scale research is still in progress and some applications
are already available in the market, the industry is still highly under-
served (Shobila and Mood, 2014). When it comes to handling realistic
challenges faced by farmers and using autonomous decision making
and predictive solutions to solve them, farming is still at a nascent
stage. In order to explore the enormous scope of AI in agriculture, appli-
cations need to bemore robust (Slaughter et al., 2008). Only thenwill it
be able to handle frequent changes in external conditions, facilitate real-
time decisionmaking andmake use of appropriate framework/platform
for collecting contextual data in an efficientmanner. Another important
aspect is the exorbitant cost of different cognitive solutions available in
the market for farming. The solutions need to become more affordable
to ensure that the technology reaches the masses. An open source plat-
form would make the solutions more affordable, resulting in rapid
adoption and higher penetration among the farmers. The technology
will be useful in helping farmers in high yielding and having a better
seasonal crop at regular interval. Many countries, including India, the
farmers are dependent on monsoon for their cultivation. They mainly
depend on the predictions from various departments over the weather

Image of Fig. 4
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conditions, especially for rain-fed cultivation. The AI technology will be
useful to predict theweather and other conditions related to agriculture
like land quality, groundwater, crop cycle, and pest attack, etc. The accu-
rate projection or prediction with the help of the AI technology will re-
duce most of the concerns of the farmers. AI-driven sensors are very
useful to extract important data related to agriculture. The data will be
useful in enhancing production. In agriculture, there is a huge scope
for these sensors. Agriculture scientist can derive data like quality of
the soil, weather and groundwater level, etc.; these will be useful to im-
prove the cultivation process. AI empowered sensors can also be
installed in the robotic harvesting equipment in order to get the data.
It is speculated that AI-based advisorieswould be useful to increase pro-
duction by30%. The biggest challenge to farming is the crop damage due
to any kind of disasters including the pest attack.Most of the time due to
lack of the proper information farmers lose their crops. In this cyber age,
the technology would be useful for the farmers to protect their cultiva-
tion from any kind of attacks. AI-enabled image recognition will be use-
ful in this direction. Many companies have implemented drones to
monitor the production and to identify any kind of pest attacks. Such ac-
tivities have been successful many times, which gives the inspiration to
have a system to monitor and protect crops. A robotic lens zooms in on
the yellow flower of a tomato seedling. Images of the plant flow into an
artificial intelligence algorithm that predicts precisely how long it will
take for the blossom to become a ripe tomato ready for picking, packing,
and the produce section of a grocery store. The technology is being de-
veloped and researched at NatureFresh Farms, a 20-year-old company
growing vegetables on 185 acres between Ontario and Ohio. Knowing
exactly how many tomatoes will be available to sell in the future
makes the job of the sales team easier and directly benefits the bottom
line, said Keith Bradley, IT Manager for NatureFresh Farms. It's only one
example of AI transforming agriculture, an emerging trend that will
help spur an agricultural revolution. From detecting pests to predicting
what crops will deliver the best returns, artificial intelligence can help
humanity confront one of its biggest challenges: feeding an additional
2 billion people by 2050, even as climate change disrupts growing sea-
sons, turns arable land into deserts, and floods once-fertile deltas with
seawater. The United Nations estimates we will need to increase food
production 50% by the middle of the century. Agricultural production
tripled between 1960 and 2015 as the world's population grew from 3
billion people to 7 billion. While technology played a role in the form
of pesticides, fertilizers, and machines, much of the gains can be attrib-
uted to simply plowing more land—cutting forests and diverting fresh
water to fields, orchards, and rice paddies. We will have to be more re-
sourceful this time around. AI is likely to transform agriculture and the
market in the next few years. The technology has been useful for the
farmers to understand various types of hybrid cultivations which
would yield them more income within the limited time frame. The
proper implementation of AI in agriculturewill help the cultivation pro-
cess and to create an ambiance for themarket. As per thedatawith lead-
ing institutions, there is a hugewastage of the food across theworld and
using the right algorithms, this problem can also be addressed which
will not only save the time andmoney but it will lead to sustainable de-
velopment. There are better prospects for digital transformation in agri-
culture backed by leveraging technologies like AI. But, it all depends on
the huge data which is quite difficult to gather because of the produc-
tion process which happens once or twice in a year. However, the
farmers cope up with changing scenario to bring digital transformation
in the agriculture by implementing AI. It's only one example of AI
transforming agriculture, an emerging trend that will help spur an agri-
cultural revolution. We will have to be more resourceful this time
around.

6. Conclusion

The agricultural industry faces various challenges such as lack of ef-
fective irrigation systems, weeds, issues with plant monitoring due to
crop height and extreme weather conditions. But the performance can
be increased with the aid of technology and thus these problems can
be solved. It can be improvedwith different AI driven techniques like re-
mote sensors for soil moisture content detection and automated irriga-
tion with the help of GPS. The problem faced by farmers was that
precision weeding techniques overcome the large amount of crops
being lost during the weeding process. Not only do these autonomous
robots improve efficiency, they also reduce the need for unnecessary
pesticides and herbicides. Besides this, farmers can spray pesticides
and herbicides effectively in their farms with the aid of drones, and
plantmonitoring is also no longer a burden. For starters, shortages of re-
sources and jobs can be understood with the aid of man-made brain
power in agribusiness issues. In conventional strategies huge amount
of labor was required for getting crop characteristics like plant height,
soil texture and content, in this manner manual testing occurred
which was tedious. With the assistance of various systems examined,
quick and non-damaging high throughput phenotyping would occur
with the upside of adaptable and advantageous activity, on-request ac-
cess to information and spatial goals.
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