
Smart Agricultural Technology 7 (2024) 100416

Available online 17 February 2024
2772-3755/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Sustainable AI-based production agriculture: Exploring AI applications and 
implications in agricultural practices 

A.A. Mana a, A. Allouhi a, A. Hamrani b,*, S. Rehman c, I. el Jamaoui d, K. Jayachandran e 

a Ecole Supérieure de Technologie de Fès, U.S.M.B.A, Route d’Imouzzer, BP 242 Fez, Morocco 
b Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA 
c Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, 
Saudi Arabia 
d Department of Agricultural Chemistry, Geology and Pedology, Faculty of Chemistry, University of Murcia, 30100 Murcia, Spain 
e Agroecology Program, Department of Earth and Environment, Florida International University, Miami, FL 33199, USA   

A R T I C L E  I N F O   

Editor: Stephen Symons  

Keywords: 
Artificial intelligence 
Precision agriculture 
Energy 
Sustainability 

A B S T R A C T   

In general, agriculture plays a crucial role in human survival as a primary source of food, alongside other sources 
such as fishing. Unfortunately, global warming and other environmental issues, particularly in less privileged 
nations, hamper the Agricultural sector. It is estimated that a range of 720 to 811 million individuals experienced 
food insecurity. Today’s agriculture faced significant difficulties and obstacles, as do the surveillance and 
monitoring systems (climate, energy, water, fields, works, cost, fertilizers, diseases, etc.). The COVID-19 
pandemic has exacerbated the susceptibilities and insufficiencies inherent in worldwide food systems. Current 
agricultural practices tend to prioritize productivity and profitability over environmental conservation and long- 
term sustainability. To establish sustainable agriculture capable of meeting the needs of a projected ten billion 
people in the next 30 years, substantial structural and automation changes are required. However, these ob-
stacles can be overcome by employing smart technologies and advancing Artificial Intelligence (AI) in agricul-
tural operations. AI is believed to contribute to global sustainability goals in multiple sectors, particularly in the 
incorporation of renewable energy. It is anticipated that AI will revitalize both existing and new agricultural 
fields by retrofitting, installing and integrating automatic devices and instruments. This paper presents a 
comprehensive review of the most promising and novel applications of AI in the agriculture industry. Further-
more, the role of AI in the transition to sustainability and precision agriculture is investigated.   

Introduction 

Background 

Currently, agriculture faces critical challenges, including climate 
change, water scarcity, environmental degradation, and dependence on 
conventional energy sources. Intensive transformation and landscaping 
can reduce biodiversity, pollute air and water sources, and put human 
and animal health at risk [1,2]. As such, a worldwide agricultural mu-
tation is needed to switch from conventional to modern automated ap-
proaches [3]. Such approaches consider the agriculture farms as 
factories and plants and animals as production units [4,5]. The devel-
opment of sustainable agriculture has attracted the attention of several 
countries focusses on economic, social, and environmental sustainability 
[6,7]. Smart innovations will be necessary to transition to a smarter and 

more sustainable agricultural sector [8]. Artificial intelligence (AI) seeks 
to develop technologies and systems capable of performing like human 
intelligence [9,10]. Recently, AI has been shown to be essential for in-
formation and services in the fields of health [11], education [12], trade 
[13], and others. 

Moreover, AI holds significant potential to enhance the sustainability 
of the agricultural industry through various applications. For instance, it 
can contribute to identifying the optimal time for harvesting fruits and 
vegetables, reducing waste, and monitoring the health of soil and crops. 
Using AI, real-time monitoring of crop production can be improved, 
enabling more effective and supervised processing. Additionally, the 
integration can lead to efficient water use, conserving this valuable 
resource while maximising crop yields [14]. Additionally, the deploy-
ment of robots and drones in agricultural farms can detect weeds, pests 
and diseases, nutrient-deficient spots, monitor crop yield and quality, 
and other applications. 

* Corresponding author. 
E-mail address: ahamrani@fiu.edu (A. Hamrani).  

Contents lists available at ScienceDirect 

Smart Agricultural Technology 

journal homepage: www.journals.elsevier.com/smart-agricultural-technology 

https://doi.org/10.1016/j.atech.2024.100416 
Received 9 May 2023; Received in revised form 13 January 2024; Accepted 16 February 2024   

mailto:ahamrani@fiu.edu
www.sciencedirect.com/science/journal/27723755
https://www.journals.elsevier.com/smart-agricultural-technology
https://doi.org/10.1016/j.atech.2024.100416
https://doi.org/10.1016/j.atech.2024.100416
https://doi.org/10.1016/j.atech.2024.100416
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atech.2024.100416&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Smart Agricultural Technology 7 (2024) 100416

2

Benos et al. [15] delved into the use of AI and machine learning in 
agriculture, covering aspects like crop, water, soil, and livestock opti-
mization. The study highlighted crop management as the most promi-
nent area, with a focus on maize, wheat, and sheep. To foster smart and 
sustainable farming, key elements include ecosystem conservation, 
adopting modern technologies, effective resource management, and 
providing robust services in AI-based agriculture [16]. To ensure agri-
cultural sustainability and maximise crop productivity while preserving 
the environment [17], it is imperative to improve, optimize, and 
modernize farming practises. Machine learning techniques have found 
applications in various aspects of sustainable agriculture, including crop 
recognition [18,19], crop disease identification [20,21], weed detection 
[22,23], water management [24,25], animal health [26,27], and live-
stock production [28,29]. AI has contributed a lot to agriculture and has 
protected crops from adverse weather changes and provided food se-
curity. Talaviya et al. [30] presented the analysis of some applications of 
AI in agriculture that included irrigation, weeding, and spraying using 
robots, sensors, and drones. Such AI-based techniques and equipment 
conserve water, pesticides, and, herbicide consumption and at the same 
time, maintain soil fertility, manage efficient use of manpower, and 
enhance the production quality [30]. The promising AI technologies 
being used or under various stages of technological development for 
sustainable agriculture, practices can be summarized as follows:  

• Crop and soil health monitoring  
• Automated weeding  
• Intelligent spraying  
• Insect and Plant Disease Detection  
• Livestock Health Monitoring  
• Harvesting, plowing, and pruning  
• Produce grading and sorting  
• Energy security 

However, smart agriculture is a practical and promising alternative 
to satisfy global food demand while maintaining a balance between the 
agricultural industry and the environmental ecosystem. The concept of 
smart agriculture refers to all management practices that use AI, ma-
chine learning, data-driven, and recent technologies to ensure the 
quality and quantity of agricultural products. This concept is one of the 
major elements in the 4.0 revolution. AI can help farmers at every step, 
from soil preparation for seeding to harvesting with robots and 
computer-assisted engines. In 2017, the total estimated value of in-
vestments in the AI technologies in agricultural sector was 518.7 million 
dollars and is expected to reach 2.6 billion by 2025, with an annual 
increase of 16.2 % [31]. 

Scope and motivation of the study 

The aim of this review article is to analyse the existing practices and 
technologies that are used and are sustainable for the ecological and 

digital transition in the agriculture sector. Preliminary understanding is 
that AI and machine-learning techniques have the potential to provide 
solution to improve agriculture and sustain the agro-production. The 
present scope of work defines sustainable agriculture’s dimensions and 
provides a comprehensive review of AI utilization in the agriculture 
industry. The review also aims at providing a useful discussion on the 
most promising applications of AI in agriculture sector. Specifically, this 
review paper is intended to propose answers to the following research 
questions.  

- How can AI promote agriculture practices and accelerate 
sustainability. 

- To what extent the use of can AI promote the sustainability of agri-
culture in developing countries with agriculture-based economies? 

- What are the limitations and challenges transitioning to smart agri-
cultural practices?  

- The future of AI in Agriculture: Farmers as AI engineers? 

AI applications in agriculture 

Sustainable agriculture is a fundamental approach to meeting soci-
ety’s food and rural needs while safeguarding the ability of future gen-
erations to meet their own needs. To achieve this, it is based on 
understanding of ecosystem services. Artificial intelligence emerges as a 
powerful tool for promoting sustainable agriculture, optimizing various 
farming aspects such as water and energy management, precision agri-
culture and smart farming techniques [32]. 

AI-driven agriculture plays a vital role in improving precision and 
contributing to overall sustainable farming practices. Through AI algo-
rithms, farmers can gain insight to efficiently manage irrigation and 
conserve water resources. In addition, AI facilitates automating labor- 
intensive tasks, such as crop harvesting, pruning, and plowing in agri-
culture, with the aid of autonomous tractors and harvesters guided by AI 
technologies, thus reducing the need for extensive human intervention. 

However, the world faces a twofold challenge: an ever-growing 
population and widespread hunger. To address these critical issues, an 
integrated approach is necessary to address the challenges related to soil 
fertility, water scarcity, energy insecurity, pests, and diseases that affect 
crops and animals. Sustainable agriculture is defined by a set of methods 
that ensure food production in harmony with ecological, economic, and 
social limits [33]. 

In the realm of agriculture, the concept of "secured smart sustainable 
agriculture (SSSA)" embodies an integrated framework that amalgam-
ates several essential branches to catalyze a revolution, ensuring the 
sustainability, efficiency, and security of the agricultural sector. Picture 
this framework as a dynamic ecosystem, vividly illustrated in Fig. 1, 
where each branch assumes a pivotal role in sculpting the future of 
agriculture. Sustainable Agriculture encompasses practices such as crop 
rotation and organic farming, augmenting yields while concurrently 
minimizing the environmental footprint. On the other hand Data 

Nomenclature 

ADM Agricultural Decision-Making 
AI Artificial intelligence 
ANNs Artificial Neural Networks 
BMBF Federal Ministry of Education and Research 
CNNs Convolutional Neural Networks 
DT Digital twin 
DL Deep Learning 
EC Edge Computing 
FAO Food and Agriculture Organization 
IPCC The Intergovernmental Panel on Climate Change 

IOT Internet of things 
ML Machine learning 
MLP Multi-layer perceptron 
M2M Machine to Machine 
NDVI Normalized Difference Vegetation Index 
PA Precision Agriculture 
PLF Precision Livestock Farming 
PWM Precision Water Management 
SSCM Site-specific crop management 
SSSA Secured Smart Sustainable Agriculture 
RPAS Remotely Piloted Aircraft System 
UAV Unmanned Aerial Vehicle  
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Security stands as a pivotal facet, diligently safeguarding sensitive 
agricultural data garnered through the deployment of sensors, drones, 
and IoT devices. 

Furthermore, blockchain Technology, with its decentralized and 
immutable ledgers, bestows transparency and traceability advantages, 
thus guaranteeing the unassailable integrity of supply chains and 
financial transactions. Precision Agriculture harnesses cutting-edge 
technology, including GPS, sensors, and analytics, to facilitate real- 
time decision-making, thereby mitigating resource wastage and 
elevating crop yields. In this perspective, renewable Energies are inte-
grally woven into this framework, enabling the assimilation of clean 
energy sources such as solar panels and wind turbines into farming 

operations, thereby curtailing carbon emissions and energy expenditure. 
IoT-Based Solutions (Internet of Things) intricately connect an array 

of devices and sensors, delivering real-time monitoring and fostering 
data-driven decision-making for a more resource-efficient and secure 
agricultural practice. 

On another front, AI was defined in 1956, as ‘the science and engi-
neering of making intelligent machines.’ The main notion was to create 
a technology able to perform like a human intelligence [9]. This was 
achieved by studying human brain processes to develop intelligent 
software and systems capable of offering the optimal result for all valid 
input [10]. The field of AI is rapidly expanding, including Machine 
Learning and Deep learning. The main objective of machine learning is 
to obtain computational models of complex non-linear relationships or 
complex models in the data, whereas AI can be described as a tool of 
decision making and advanced analytics [34]. MLs are often used to 
trace models in data,as well as to achieve high performance [35]. 

ML algorithms are trained using three prominent methods commonly 
recognised as ‘supervised’ where the system learns from labelled data; 
‘unsupervised’ where the unlabelled system finds patterns in the data; 
and ‘reinforcement’ learning from new situations using a trial-and-error 
method [36]. Fig. 2 shows the different ML used in literatures. However, 
it’s important to note that the representation of ML in Fig. 2 lacks the 
inclusion of reinforcement learning, a significant omission that deserves 
acknowledgment. Reinforcement learning holds particular significance 
as it involves learning optimal decision-making strategies through in-
teractions with an environment, receiving feedback in the form of re-
wards or penalties [37]. This method overlooks a crucial aspect of ML 
algorithms, as reinforcement learning plays a vital role in various AI 
applications, such as robotics, gaming, and autonomous systems [38]. 

Fig. 1. Main pillars of Secured Smart Sustainable Agriculture.  

Fig. 2. Artificial intelligence dimensions.  
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Its ability to learn from experiences and optimize decisions based on 
feedback distinguishes it as a key paradigm within ML. 

AI has significantly contributed towards improving the efficiencies of 
many engineering and social led to problems of different industries. 
These technologies have even been introduced in the agricultural value 
chain from production to transport, to distribution, and to marketing. 
Agricultural robots have added a high value of AI and help in several 
stages of agricultural production such as increasing crop yield, opti-
mising irrigation, detecting soil content, monitoring crops, and weeding. 
From another point of view, intelligent systems can process information, 
provide complex reports, and serve farmers in decision making and 
complying efficiently with quality requirements. Consequently, AI has 
the potential to provide essential solutions to address different chal-
lenges in this industry and will make it possible to produce better results 
more effectively. The diverse form, in which AI can intervene in the 
agriculture sector, operates through the usage of new information, 
communication technologies, and internet of things. 

Precision water management 

Precision water management (PWM) is a data-driven approach in 
agriculture that optimizes water usage by applying water precisely at the 
right time, place, and crop growth stage. By leveraging technology and 
data analysis, PWM aims to conserve water resources, promote sus-
tainability, and enhance overall farming efficiency [39]. This approach 
involves sensible use of water to achieve sustainable water consumption. 
In agriculture, PWM refers to accurate and appropriate application of 
high-quality water at the proper time, place, and crop growth stage. Due 
to numerous technologies and instruments, several ways have been 
proposed to achieve such objective. 

Therefore, AI is pivotal role in revolutionizing water precision 
management in agriculture lies in its ability to conduct data analysis and 

real-time monitoring, thus optimizing irrigation practices for sustain-
able farming. The transformative power of AI in this domain can be 
attributed to the following key aspects:  

• Insights from Geospatial Data: AI and big data technologies analyses 
geospatial data to offer valuable information on soil moisture levels, 
weather patterns, and crop water requirements [40]. 

• Real-time Sensor Data and Weather Forecasts: By integrating geo-
spatial data with real-time sensor data and weather forecasts, AI 
enables more accurate and efficient irrigation scheduling [41]. 
Farmers can rely on AI’s analysis to determine optimal irrigation 
schedules and amounts, avoiding over- or under-watering their 
crops.  

• Identifying Areas of Inefficiency: AI-powered sensors monitor water 
usage on farms, detecting inefficiencies and patterns. This helps 
farmers identify areas where water is wasted or used inefficiently, 
allowing corrective measures to be taken [42]. 

• Reducing Water Wastage: AI fine-tunes irrigation practices to mini-
mize water wastage. By precisely controlling the application of 
water, AI enables farmers to maximize crop yields while minimizing 
water usage, which is particularly crucial in regions with limited 
water resources or unpredictable weather patterns [43,44]. 

Many technologies have been developed to control the communi-
cation between machines and different nodes settled in agricultural 
farms. These Machine to Machine technologies are efficient for moni-
toring soil moisture content and temperature at periodic intervals to 
automate the irrigation with precise requirement [45]. Remotely 
controlled sensors can be used to observe both biological and climatic 
conditions [46,47]. 

Furthermore, ML becomes a valuable tool, with the aid of measured 
real time data from the agriculture farm, for making right decisions for 

Table 1 
Literature survey on water management models.  

Ref. Inputs Algorithms Method model Technology Performance 

Choudhary et al. [61] Climatic conditions, soil 
moisture content 

Partial Least Square 
Regression (PLSR) 

Evapotranspiration 
model 

Economic hardware, 
sensors, (IoT). 

Increased efficiency and 
economic feasibility 

Anand et al. [62] Temperature, 
soil humidity 

Fuzzy Logic Controller Penman–Monteith 
model 

Wireless Sensor Networks 
(Sensor nodes, hub, and 
control unit) 

Automated drip irrigation 
water conservation 

Subathra et al. [63] Climatic conditions, soil 
moisture content 
topography 

ANN method Soil moisture model _______ Precision and Robustness of soil 
moisture prediction, water 
saving 

Chen et al. [64] Soil water content and 
meteorological data 

Convolutional neural 
network-) 

Pearson correlation, 
soil water content 
autocorrelation 

Deep learning 
Near-infrared (NIR) 
spectroscopy 

Prediction accuracy ninety-three 
% 

Arvind et al. [65] Moisture, weather 
forecast and water level 

Machine Learning 
algorithm – 

___________ IoT, ZigBee technology, 
Arduino microcontroller 

Drought prediction 

Poblete et al. [66] Meteorological data, soil 
composition 

Artificial neural 
network (ANN) 
Machine learning 
techniques 

Evapotranspiration 
model 

Unmanned aerial vehicle 
(UAV) 
remote sensing platforms 

Performance to predict water 
stress 

Melit and manghanem  
[67]. Melit and 
Benghanem[68] 

Different conditions ANN networks Optimal model sizing Hybrid intelligent systems 
(HIS) 

Sizing of optimal stand-alone 
photovoltaic systems 

Richards and Cnibeer. [69] Different conditions Regression 
comparison 

Optimal model sizing Standalone power supply 
(SAPS) 

Seasonal Variability of Solar 
Insolation 
(PV) panels with H2 storage 

Hernandez and Medina  
[70] 

Different conditions and 
inputs 

Genetic algorithms Optimal model sizing Sizing grid-connected PV- 
system 

Stability voltage distribution 

Ammmar and Oualha [71] Climatic data Feed Forward Neural 
Network 
Adaptive Neuro Fuzzy 
Inference System 

Optimal model sizing Solar pumping systems Photovoltaic power forecast 

Achite et al. [72] meteorological and 
hydrological 

ANN, ANFIS, SVM, and 
DT 

Hydrological Drought 
Modeling 

machine learning 
techniques 

ML accurately predicted 
drought, with SVM 
outperforming 

Chandel et al. [73] Crop data and images AlexNet, GoogLeNet 
and Inception V3 

Water stress modeling Deep learning GoogLeNet achieved remarkable 
accuracy  
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improving water usage efficiency and managing evapotranspiration 
process. As summarised in Table 1, ML allows for a correct and effective 
use of resources. One of the essential aspects of digitalization is the 
large-scale use of wireless sensor networks centrally controlled by ML. 
Furthermore, the commercialization of thermal cameras, facilitated by 
advancements in graphics and high-speed real-time computer process-
ing, has opened new opportunities for estimating soil hydraulic condi-
tions through the acquisition of thermal indices [48]. With recent 
advances, AI-based reasoning about soil water balance and forecasting 
can optimise hydraulic variables and protect land against erratic cli-
matic conditions and disasters [49,50]. 

Furthermore, solar photovoltaic water pumping has become tech-
nologically mature and commercially acceptable for water pumping in 
the agricultural sector in rural areas. A great advantage of using solar PV 
based water pumping is that the water requirement and sunshine 
availability timings coincide. However, due to the intermittent nature of 
solar radiation, more than one energy sources can be integrated to 
assure continuous energy availability for irrigating the crops. Moyo [51] 
presented a comprehensive AI-based modelling of a solar/diesel hybrid 
water pumping system with the objective of optimizing its performance. 
The results revealed that the ANFIS-based MPPT system was able to 
generate maximum energy from PV modules under prevailing weather 
conditions [51]. Furthermore, hybrid power systems reduce life cycle 
costs relative to standalone power systems and also provide continuous 
and reliable energy [52]. Karar et al. [53] used the internet of things to 
minimise water wastage in irrigation process based on meteorological 
data measured through sensors (ambient temperature, relative humid-
ity, soil moisture, etc.) and the multilayer perceptron neural network 
approach. The proposed model could manage sensor data to automati-
cally control the operation of the water pump. For sustainable irrigation, 
the management information system along with the online adaptation of 
climatic conditions help improve crop productivity and reducing the 
overall cost [54]. Abidin et al. [55] used moisture content data in the soil 
with an intelligent irrigation control system to reduce the use of water 
usage for cultivation. The technology of wireless sensor networks was 
used in the agriculture sector to promote Precision Agriculture (PA) 
[56]. Wireless sensors with fuzzy controllers [57] have been recom-
mended for the automation of the irrigation system [58]. Xiao and Liu 
[59] proposed the use of microcontroller units to facilitate a smart 
irrigation system. Karar et al. [53] used a smart controller based on MLP 
neural networks for water irrigation system [60]. 

Integrated food safety 

Conventionally, agricultural productivity and crop diversification is 

strongly linked to protection against weeds and diseases or infestation 
by pests and insects. In the face of these risks, food security becomes 
crucial [74]. Thereby, the faster the detection, better will be the 
implementation of security parameters and the measures necessary for 
the preservation of crops [75]. In recent years, ML and DL have been 
applied to protect through insect pest monitoring [76], weed detection 
[77], and identification of plant diseases [78]. 

Machine learning, using remote sensing to recognise species and 
diseases [79], is applied using decision trees, random forests, and neural 
networks to extract features and object classification. Deep learning has 
emerged as useful method with big data and visual technologies. Con-
volutional neural networks are the easiest type of DL to process 2D 
images with fewer errors but depend on high volumes of measured and 
expert data sets (Fig. 3). The AI-based disease detection process involves 
image collection, image labelling, data splitting and storage, and 
dividing the data set into training, validation, and testing data subsets. 
The model is trained and validated using the data subsets, as defined, 
and then the model results are tested against the third data set to provide 
the decision on whether the disease exists in the crop or not.Deep CNNs 
have gained the interest of researchers in intelligent integrated man-
agement. CNN based on deep learning, coupled with remote sensing and 
big data, is faster and more dependable [80,81]. Details of input data, 
algorithm, performance, and limitations, of using ML approaches for 
weed and disease detection are summarized in Table 2. It is observed 
from the Table that imagery data along with appropriate ML method 
provides the most accurate detection of the presence of weeds in the 
crops. 

Precision livestock farming 

Monitoring the health of livestock plays an important role in modern 
agriculture by ensuring the welfare of animals and producing high- 
quality products. Advanced artificial intelligence techniques can use 
sensors and cameras to monitor animal health in real time, dropping the 
need for traditional training. Compared to conventional methods, AI- 
based systems have several advantages, such as identifying patterns 
and potential health problems before they become serious. [94,95]. 
These systems can be based on various models and technologies such as 
IoT, edge computing, and Distributed Ledger Technologies [96]. How-
ever, the implementation of such a system comes with several potential 
concerns, including initial cost, technical expertise and requirements for 
specialised equipment, ethical concerns, and doubts about job relocation 
of jobs [97]. Despite these challenges, leveraging AI for Precision live-
stock farming systems can significantly enhance animal welfare and 
decision-making process. By providing information on animal 

Fig. 3. Banana disease detection using intelligent algorithms [82].  
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behaviour, feeding, and environment, AI helps farmers optimize their 
livestock management systems. 

In recent years, the need of establishing comparable standards in 
large-scale livestock farming systems has been discussed to improve 
decision-making and data interchange. Both farmers and farm- 
integrated approaches were advocated for adoption, along with a 
consensus on the requirements for data exchange [98]. This would allow 
farmers and regional stakeholders to realize the benefits of sharing data 
effectively. 

Studies on energy usage in dairy farms have been explored, high-
lighting the significance of prediction models to analyse energy con-
sumption and evaluate the effects of modifications in infrastructure 
equipment and management practices. The literature commonly reports 
a reduction of 35 % in energy usage with the adoption of grazing-based 
dairy systems [99]. Various methods have been used to forecast energy 
consumption in dairy farming, including the CART decision tree, the 
random forest ensemble, artificial neural networks, and support vector 
machine [99,100]. 

Furthermore, animal health is also a key aspect of livestock pro-
duction. The monitoring can focus on sound analysis that have the po-
tential to be automated for large-scale farming, thus providing an 
efficient and cost-effective way to track animal well-being [101]. The 
use of machine learning algorithms, including face-face recognition 
through convolutional neural networks became widely used. For 
example, the review [102] identified relevant sensors to measure animal 
health, such as cameras (2D and 3D), microphones, thermistors and 
accelerometers, and highlighted how these technologies can be used to 
improve pig health, leading to better outcomes for both animals and the 
industry. In summary, these studies prove the potential of advanced 
technology in promoting animal welfare and improving the efficiency of 
livestock farming. 

Crop productivity and fertility 

Precision agriculture or site-specific crop management is defined as 
an agricultural system that uses technology, satellite and aerial images, 
climate forecasts, and prediction applications to improve the produc-
tivity and the profitability indicators of the fields. Based on collected 
data, AI could foster agro-technologies and increase crops quality, pro-
ductivity, and hence the profitability. ML makes it more achievable by 
learning from the analysis of measured data and performing agricultural 
production with a high degree of accuracy (Fig. 4) 

For example, AI may response to crop health issues or soil nutrient 
deficiencies based on the measured data [103]. AI techniques can 
examine photo-sanitary models, soil health, and the amount of fertilisers 
required [104]. Therefore, the risks of plant and the soil degradation 
may reduce, and yields can cope with the market trends, maximize the 
income from different farms [105], and ensure better crop mapping for 
decision-making (Fig. 5) [106]. Under the recent Soil monitoring sce-
narios, once farmers submit a sample of their agricultural soil to the 
monitoring agency, they will receive a detailed summary of their field 
soil contents. Based on the results obtained, an appropriate deci-
sion/action is taken and communicated to the farmer about the presence 
and type of bacteria, fungi and wide-ranging microbial progression 
[107]. 

AI for harvesting, pruning and ploughing 

AI-based robots have revolutionized agricultural tasks, offering 
advanced capabilities in areas such as harvesting, pruning, and plowing. 
These robots have brought significant improvements to farming opera-
tions, resulting in increased productivity and efficiency. One remarkable 
example is the development of a sowing, pruning, and harvesting robot 
designed to work efficiently in dense vegetation. This small and flexible 
robot minimizes its impact on the environment and exhibits impressive 
obstacle avoidance capabilities, reducing operating time by 49 % 

Table 2 
AI performance and limitations for weed and disease detection.  

Application Inputs Method/algorithms Performance Limitations Ref 

Weed 
detection 

UAV images Fully Convolutional Network 
(FCN) method 

Weed mapping: 94 % weed 
recognition: 88 % 

Requires vast human 
expertise 

H. Huang et al.  
[83] 

Weed 
prevention 

multispectral, hyperspectral 
cameras, and GPS data 

ROBOTs. Sensor machine 
learning 

Saves time and removes resistant 
weeds. 

Expensive and affect soils Brazo. [84] 

Weed 
prevention 

Yield sensing and imagery data Colour-based and Texture 
Based algorithms; 

High accuracy 92.9 % Expensive Sujaritha et al.  
[85]. 

Weed 
detection 

(RGB)/ hyper spectral images Deep Convolutional neural 
networks 

High accuracy 98.23 % Requires big data. Assad and Bais.  
[86] 

Disease 
detection 

UAV images (RGB) CNN Overall accuracy 89 %,94 % Requires big data and 
human expertise 

Bah and Canals.  
[87] 

Disease 
detection 

Multispectral Imaging and 
sensing data 

Phenotyping technology, 
remote sensing methods 

Early season detection and 
performance 

Require big data Ampatzidis and 
Partel [88] 

Disease 
detection 

Expert systems Web-Based Expert System High performance Internet dependence Beiranvand . [89] 

Disease 
detection 

UAS images 
Data Base 

CNN an average accuracy of 93.75 % Image segmentation affect 
CNN acuraccy 

Junde Chen et al.  
[90] 

Weed 
detection 

Digital Image Remote sensing methods real-time, submeter- or even 
decimeter-level accuracy 

– Perez-Ruiz el al  
[91]. 

Weed 
detection 

Hyper spectral images SVM, ANN, and CNN Quick detection. Accepted accuracy Che’Ya [92] 

Weed 
detection 

Thermal images,Big data ANNs Performance. Reduces trial and 
error. 

Requires big data, expensive Zamani and el. [93]  

Fig. 4. Site-specific crop management based on a three-dimensional approach 
that assesses inputs and outputs from fields to watersheds and regional 
scales [8]. 
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compared to traditional controllers [108]. Precision farming, which uses 
appropriate technology and practices to produce high-quality agricul-
tural products, is one area where AI can be applied. Here are some ex-
amples of how AI can be used for harvesting, pruning, and plowing:  

- Smart Spectrometer: This is a spectrometer with integrated artificial 
intelligence that can estimate properties such as substance concen-
trations and compositions. It can be integrated into a harvesting 
vehicle, where quality is determined by predicting sugar and acid in 
grapes in the field [109].  

- Complexity-Driven CNN Compression: This is a type of model 
compression that can accelerate Convolutional Neural Networks 
(CNNs) on low-power devices. It can be used for pruning CNNs for 
resource-constrained edge AI [110].  

- Selective Harvesting Robotics: This is an area of research that aims to 
develop robots for selective harvesting. The task of selective har-
vesting is not easy for robots, but it allows for improved farm man-
agement and can optimize the food-production chain [111].  

- Pruning and Harvesting Manipulators: These are manipulators used 
in the agricultural robotics field. They can be used for pruning 
grapevines and apple trees, as well as harvesting strawberries, to-
matoes, apples, sweet-peppers, and iceberg lettuce [112].  

- Plant Counting with UAV RGB Images and Deep Learning Networks: 
Utilizing Unmanned Aerial Vehicles (UAVs) equipped with RGB 
cameras and deep learning networks, AI demonstrates its capability 
in accurately counting plants within agricultural fields, such as rice 
paddies. The methodologies employed—image processing and deep 
learning algorithms—form the foundational technology that extends 
beyond plant counting. These methodologies serve as the basis for 
various AI-driven agricultural tasks like harvesting, pruning, and 
plowing, leveraging similar data processing, decision-making algo-
rithms, and precision achieved through advanced image analysis 
[113,114]. 

These are just a few examples of how AI can be used for harvesting, 
pruning, and plowing in agriculture. As AI technology continues to 
advance, we can expect to see even more innovative applications in 
this field. 

Sustainable AI based agriculture 

Predictive analytics for smart energy planning 
Predictive analytics is a powerful tool that empowers farmers to 

optimize their energy usage and make informed decisions in agriculture. 
By analyzing data from diverse sources, predictive analytics offers 
valuable insights on crop selection, optimal planting times, appropriate 
fertilizers, irrigation schedules, and pest or disease management. One 

application of predictive analytics in agriculture is smart energy plan-
ning, promoting the use of renewable energy sources and energy con-
servation techniques to enhance sustainability and decrease fossil fuel 
dependency. Smart agriculture further leverages predictive analysis, 
integrating Agro IoT systems, renewable energy sources, and vertical 
farming techniques to increase yields while minimizing water and en-
ergy consumption, resulting in more sustainable farming practices. 

The integration of AI-driven energy management and IoT-based 
weather forecasting holds immense potential in transforming agricul-
ture practices for greater efficiency and sustainability. Utilizing 
machine-learning algorithms, AI accurately predicts energy demands, 
detecting potential inefficiencies in energy usage. With historical data 
analysis, farmers can proactively allocate energy resources, minimizing 
environmental impact. The coupling of IoT with meteorological sensors 
enhances weather forecasts, surpassing conventional methods’ limita-
tions and providing predictions that are more precise. Proposed solu-
tions incorporate deep neural networks and CNNs, supported by 
meteorological satellite data, to bolster weather forecasting. Recurrent 
neural networks improve long-term climate modeling with short-term 
memory capabilities [115]. Managed through CPU or cloud platforms, 
the collected data ensures precise results, accessible via mobile appli-
cations for real-time monitoring and decision-making in agricultural 
activities [116]. This fusion of AI-driven energy management and 
IoT-based weather forecasting presents a transformative approach to 
sustainable and efficient agriculture practices. Hybrid models 
combining CNN with RNN architectures may enhance accuracy in 
managing both spatial and temporal data [117]. Table 3 summarizes 
diverse energy predictive solutions. 

AI-based energy management for agriculture products 
To modernise the agriculture sector, electrification may be an 

effective approach and can result in environmental and economic ben-
efits [126]. In the present times, the agricultural energy internet (AEI) 
concept is getting popular in developing relevant agriculture technolo-
gies. AEI is relatively a recent development and was derived from Energy 
Internet to accomplish clean energy generation for isolated places. AEI is 
a multi-energy system realized by combining power networks, heating, 
gas and requires agricultural information sharing by the people [126]. 
AEI supports new energy industries, smart agriculture solutions, and 
rural revival, Fu et al. [127]. The intelligent management and control 
systems adopt standard methods for collecting the current, voltage, 
electrical fault, and power classification data to carry out the real-time 
safety analysis and issue warning, if any for the safety of agriculture 
production, Song et al. [128]. Fu and Yang [129] provided guidelines for 
protecting crops and trees from low temperatures and agricultural 
deficiency. The multi-source data fusion concept is useful for moni-
toring, positioning, and navigating the greenhouse environment to 

Fig. 5. Crop yield map using machine intelligence algorithms [106].  
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optimize and improve agriculture produce. For risk assessment, it is 
essential to predict the meteorological variables to safeguard the growth 
level of agricultural products. Mancipe and Gutiérrez [130] proposed a 
data fusion strategy to predict meteorological parameters to precisely 
monitor the growth of agriculture products. 

Sparrow et al. [131] provided proper strategies may be needed when 
AI begins to affect the agriculture sector. The study pointed out some of 
the consequences which may arise due to the implementation of AI 
technology in agriculture sector. According to the authors, AI may be 
beneficial for farmers, end users and the environment but may present 
unknown risks and suggested some alternative designs and regulatory 
procedures have been suggested to the risks. The civil and principled 
impacts of using AI in the farming were studied to find out how are they 
correlated with AI ethics [132]based on sustainability, trust, privacy, 
benefits, transparency, freedom, responsibility, justice, morality, and 
unanimity. 

Vincent et al. [133] mentioned that currently some of the farmers are 
using automated equipment fed through huge data collected by mete-
orological sensors and satellite imagery. These farmers act in accordance 
with the advice provided by sophisticated computer applications. 
Existing investment on precision agriculture assures an important role of 
AI in agriculture [134,135]. The ML methods are expected to address 
key research topics in agriculture sector, which include meteorological 
parameter prediction ahead of time, economic modelling, and plant and 
animal breeding. Furthermore, AI and ML methods have the potential to 
improve distribution, balance energy consumption loads, and manage 
fluctuations in renewable energy production. The energy transition can 
incorporate AI into their system for more opportunities to improve the 
efficiency of production and consumption. 

Moreover, it is agreed that improving the efficiency of biomass 
processing could help agricultural regions to produce bioenergy and 
addressing the challenges that hinder biomass-based energy develop-
ment [136]. Practically, agricultural biomass can feed large scale of 
bioplants (100 MW and more) [137,33]. Thus, pyrolysis and gasification 
technologies been widely developed [138], explaining the reason for 
huge AI studies coupled with these systems [139,140]. Combined heat 
and power (CHP) technology can be widely adopted for waste man-
agement and energy production [141]. CHPs are identified for their 
promising efficiency in modern greenhouses, compared to biogas plants 
[142]. Considering the progress of cogeneration systems, if integrated 
with AI methods, can be an effective and potential solution to 
compensate for the different energy demands of agricultural green-
houses [143,144]. Furthermore, bioenergy systems have proven per-
formance, as well as combined and hybrid with other green technologies 
[145,146]. Generally, the potential benefit of AI is to simultaneously 

supply electricity by controlling and monitoring main equipment, input, 
and output parameters [147]. 

Nanotechnologies utilization for agricultural management 
The exponentially increasing population, adverse effects of climate 

change, growing biofuel demands, and deteriorating soil condition are 
some of the alarming international food security issues. Exploring new 
and sustainable options requires modern techniques to emulate infor-
mation from materials science and automation [148]. Emergence of 
precision agriculture with nanotechnology and AI, offers excellent av-
enues for sustainable food production. The third Green Revolution of the 
1950s and 1960s improved agriculture production and minimized the 
scarcity of food and spread of malnutrition. Since then, the global 
population has crossed 6 billion mark and has compelled an increase in 
agriculture production. Today, this sector is facing challenges such as 
decreased yields, soil quality, freshwater availability for irrigation, 
fertility, and excessive use of pesticides and fertilizers [149]. 

For the development of the precise and sustainable agriculture sector 
development, nanotechnology can offer excellent opportunities, dis-
cussed in review articles covering strategies to improve crop nutrition 
and develop smart plant sensors [150,151] . Nanotechnology can 
facilitate the delivery of fertilisers to tissues and organisms in a 
controlled way [152], which would be beneficial for plant growth and 
optimal use of fertilizers and pesticides and minimise adverse effect on 
soil condition [153,154]. Furthermore, nanotechnology applications in 
agriculture include the plant sensor development through which the 
plants can itself sense abiotic stress depending on the directed delivery 
of nanomaterials [155]. Four main areas in which nanotechnology is 
progressing include improving production yield, soil conditions, and 
efficiency of materials usage, Fig. 6 [148]. 

Additionally, the integration of nanotechnologies with AI-driven 
methodologies amplifies these advancements in agriculture. AI com-
plements nanotechnologies by providing intelligent data analysis, pre-
dictive modeling, and autonomous decision-making capabilities. The 
fusion of nanotechnology and AI promises novel opportunities in pre-
cision farming, allowing for real-time monitoring, precise resource 
management, and informed decision support systems. This collaboration 
aims to revolutionize agricultural practices, enhancing productivity, 
sustainability, and efficiency in the face of global agricultural challenges 

Discussions: issues and challenges related to the use of AI 

As perceived before, AI can change our traditional view of the 
agricultural sector and enable farmers to be agents of change, especially 
in rural areas. However, AI remains a vast field that operates in a way 

Table 3 
Performances and limitations of AI on predictability.  

applications Technologies Inputs Performance Limitations Ref 

Energy modelling AI and ANFIS Energy, climatic and 
agricultural data 

High accuracy using Hybrid learning method _ Ashkan et al.  
[118] 

Smart energy inputs ,Smart energy 
pacages,ANN 

Nitrogen,fuel,manure, 
and electricity 

Reducing 17.3 % of energy and 23 % of GHG 
emissions 

_ Elahi et al.  
[119] 

Agrivoltaics energy 
prediction 

Regression, ANOVA Weather and crop data Predicted LER value of 2.17 relies on the proper 
arrangement of PV panels and crops in the research 
region. 

Low accuracy Abidi et al.  
[120] 

energy consumption 
in greenhouses 

Baysian model Climatic data and 
greenhouse dimensions 

The CBMA model outperformed BMA, MLP-SEOA, 
MLP-SCA, MLP-BA, MLP-PSO, and MLP models. 

_ Ehteram et al.  
[121] 

Early warning systems IoT and ML Climatic data Reduce the number of tasks and data completeness 
of routing in a larger coverage agricultural 
greenhouses. 

Data collection Liu et al.  
[122] 

Weather forecasting ANN Metrological 
parameters 

Acceptable error percentage, fast prediction. 
prediction results till 2050 

Increasing of the percentage 
predicted errors with time.  Yahya and 

Seker. [123] 
Load forecasting ML, IoT Different parameters Acceptable errors, 

Fast prediction. 
Short term load prediction Raju and 

Laxmi. [124] 
Load forecasting Multi Linear 

Regression (MLR) 
Different parameters Higher accuracy Short term Kim et al.  

[125]  
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that is dependent on several factors relating to the nature and quantity of 
data collected, modelling, design, type of algorithm used, and is highly 
dependent on the way in which is all applied. All these elements can be a 
hindrance to the development of AI in the agricultural sector. However, 
the advantages of AI are unavoidably accompanied by several risks. 
Currently, the issues and difficulties raised by using AI in agriculture are 
still not inevitable. In this section, the relevant challenges of AI appli-
cations in agriculture are highlighted. 

Lack of trust 

The question of whether we are capable of placing the total trust in 
agricultural and food processing machines is the subject of a long debate 
[156–158]. Today, agriculture industry is undergoing a digital revolu-
tion, but lacks the intelligence to delegate all agricultural tasks to 
technology and robots. 

Today, intelligent systems may help to optimize performance, 
manage risks at all levels and if possible, innovate. From a security 
perspective, agriculture may be at risk of conflict and war due to these 
systems’ susceptibility to hacking and cyber assaults. This raises the 
question of entrusting decision making to algorithms based on meteo-
rological, biological, or energetic data. 

Thus, experience has shown that AI has disrupted the processes of 
many fields such as banking, industry, and medicine. Relying on ma-
chines and decision support systems can pose major ethical and prob-
lems and programs may have a "cold" logic. The limitations of trusting 
these algorithms in agriculture can be seen as the emerging self-driving 
car technology. It will be difficult to define ethics for insurance to cover 
liability in case of fatal decisions and accidents. The need for normative 
rules for these innovations is the next step soon. 

Impact of artificial intelligence on the workforce 

The ability of AI to replace humans in performing cognitive tasks is 
one of the critical issues. Digitalization of agriculture will make it 
possible to our production-related tasks at a lower cost and in a shorter 
time, which will change the function of farmers and reduce their 
numbers to the minimum possible. The digitalization of activities and 
relationships creates new dangers for occupational health and safety 
(OHS), such as an increase in mental load and a blurring of personal and 
professional boundaries. These significant technical advancements 
cause people, especially older workers, to doubt their knowledge, which 
can put them in situations where they are incompetent and cause sig-
nificant personal destabilization. As a result, learning new technologies 

Fig. 6. Nanotechnology Applications in agriculture [148].  
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or procedures through training can be challenging, and this can lead to 
feelings of frustration and failure that may demotivate people, creating a 
vicious cycle of professional disinsertion. Good change management will 
consist of anticipating these psychosocial risks, defining, and imple-
menting an approach that allows the project to be implemented without 
significant disruption to new working contexts, tasks/responsibilities, 
and skills. 

AI application in the workplace creates new concerns about occu-
pational dangers and safeguarding farmers from the effects of the 
changes in labor [159–161]. Psychological dangers, such as emotions of 
reliance, loss of autonomy and identity, and extra mental load, are 
linked to human-machine interaction, in addition to the physical risks 
brought on by malfunctioning robot/s. With legal, ethical, social, and 
regulatory issues at stake, such as the emergence of technostress, the 
exploitation of personal data in the workplace, the security and 
decision-making latitude dimensions of human-machine interactions, 
the transparency of monitoring algorithms, etc., there is growing 
concern about the risks of artificial intelligence and machine learning in 
the workplace. This concern comes from its integration to automated 
machines and in farmer monitoring. 

The question of data-driven algorithms 

The future of smart agriculture lies in the efficient collection and 
analysis of data. Data are not readily available, particularly at a local 
farm scale [162], and if available could contain uncertainty. The 
measured data contains information and trends about weather, soil, 
crops, water resources and more could be extracted and used as decision 
support for farmers, researchers, agricultural advisors, and market ser-
vices. Development of an open-source database, at a global and local 
scale, will serve as the baseline for scientists, economist, and farmers. 
This database will contain satellite imagery, Internet of Things (IoT) 
sensors data, soil, crops, water, tillage and surface temperature data [39, 
163]. At the data collection stage, IoT network can help collect data 
measured from sensors located in the field, in the soil probes, 
tower-mounted devices on tractors, providing real-time accessibility. 

The next stage concerns the integration of collected information with 
data from cloud-based systems (soil types, present and future weather 
conditions, cost models, etc.) to extract insights and patterns by machine 
learning models. These predictive models help farmers and scientists to 
detect existing and future issues. The challenge now lies in promoting 
global efforts for the availability, accessibility and usability of data in 
agriculture. Integrating these stochastic algorithms in deterministic 
approaches such as biophysical models is a hot topic that research is 
working on. Scientists are actively working on the integration of the 
physical aspect in the ML algorithms for making the whole system more 
realistic application. There is also significant legal ambiguity around 
machine learning in general, as with any breakthrough. Although there 
are still standards that must be followed, the sector is evolving, con-
cerning the concepts of ethics and accountability. 

The question of interpretability 

Good design may be able to reduce some of the hazards mentioned 
above, making them important considerations for those who develop AI 
for agriculture. The characteristics of AI, such as its proneness to bias 
and algorithms nature, are linked to several the problems involved with 
its application in agriculture. In fact, concerns about interpretability 
have recently arisen in response to the emergence of machine learning. 
Some machine learning algorithms operate in a very opaque manner and 
their conclusions are still not fully explicable or justified [164,165]. 
Therefore, interpretability may also be of an instrumental relevance for 
several reasons, including the right to explanation of stakeholders who 
may be impacted by an ML decision in agriculture. 

AI and ML models, however powerful it may be, but still considered 
mysterious and black boxes. Now, it is difficult to measure and justify 

their results or outcomes. Interpretability is the inherent issue with the 
use of AI. There are two distinct levels of interpretability in machine 
learning models.  

1) Low interpretability: This includes ML models such as support vector 
machine (SVM), neural networks, and deep learning. The lack of 
interpretability is justified by using structure of multiple inter-
connected layers containing different types of neurones; in the case 
of deep learning or complex geometrical foundations; in the case of 
SVM. 

2) High interpretability: This level includes the classical regression al-
gorithms such as linear, multiple linear, decision trees, Ridge and 
least absolute shrinkage and selection operator Lasso regressions. 
Although these models are inherently interpretable but there is a 
limited relationship between explain ability and the accuracy of the 
predictability in the future. 

To this end, it is essential to avoid technological determinism while 
considering the future of agriculture. This is not meant to ignore the 
possibility of agricultural uses being facilitated by technology, but 
rather to improve intelligent systems and adapt them in the agro-food 
sector. 

Explainable AI (XAI) is a branch of AI that has been specifically 
developed to ensure transparency and comprehensibility. This is 
particularly important in fields such as agriculture, where decisions 
made by AI systems can have significant impacts on crop yields, water 
usage, and overall sustainability [166]. The use of XAI in smart agri-
culture can help build trust in AI-based technologies, identify potential 
biases or errors, and ensure that these technologies are transparent, 
accountable, and in compliance with relevant regulations and standards. 

Specific issues of use of AI in agriculture sector in developing countries 

The agriculture sector has gone through several transformational 
revolutions throughout history that have significantly affected produc-
tion and efficiency. From the first agricultural revolution, which enabled 
people to settle down around 10,000 years ago, to the most recent 
agricultural revolution called "digital agricultural revolution". This 
revolution is characterized by the integration of IoT technologies and 
the emergence of Big Data to connect agricultural systems, resulting in 
unprecedented levels of efficiency and productivity. All These changes 
have played a critical role in the development of agriculture. However, 
the development and adoption of smart agricultural technologies in 
developing countries is significantly lagging and varies depending on 
the country and region. The main obstacles to the adoption and use of 
intelligent agricultural technologies in developing countries include a 
lack of financing (initial investment), low awareness of modern agri-
cultural technologies and processes, limited technical capabilities, and 
restricted access to information sources on agricultural technologies. 
Cultural factors, biases, and traditional agricultural practices also play a 
role in resistance to the adoption of intelligent agricultural technologies. 

Furthermore, the lack of coherent policies and legal frameworks to 
support the use and adoption of intelligent agricultural technologies is a 
significant obstacle. Developing countries do not have the same re-
sources or expertise as developed countries to support research and 
innovation in intelligent agricultural technologies. In addition, farmers 
may be limited by low-income levels, which hinder their ability to invest 
in agricultural technologies. 

In this section, a roadmap is presented which outlines the crucial 
issues surrounding AI and agriculture in developing countries. The aim 
is to provide a thorough understanding of the questions being posed and 
their relevance for researchers, businesses, and policymakers who are 
not well versed in agriculture and rural realities. It should be noted that 
while the section highlights important issues and provides an overview, 
it does not explore specific case studies for each country. 
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Logistic issues 
From a logistical point of view, the provision of low-cost agricultural 

machinery by AI-based platforms enables farmers to access on-demand 
tractor services and optimise their resources [167,168]. Several tech-
nologies can help farmers who cannot afford to buy equipment to 
respond to the uncertainty caused by climate change in a faster and more 
cost-effective way. 

In addition, AI and algorithmic decision-making systems used in 
agriculture can be applied to improve efficiency in various sectors and 
have been used in the implementation of complex public procurement. 
These systems can also help reduce fraud and corruption and remove 
excessive and burdensome bureaucracy. Developing countries can 
therefore build on decision-making systems in agricultural administra-
tion, logistics and supply chains, including input programmes, to 
improve efficiency and accountability [169]. 

To conduct a comprehensive study on improving agricultural logis-
tics, it is essential to gather data on various aspects such as the number 
and locations of logistical services, their capabilities, challenges, and 
benefits. Additionally, the research must explore opportunities for 
scaling these services and examine the government’s role in enabling 
them. 

It is also crucial to review existing regulatory frameworks that apply 
to public infrastructures like satellites and advanced technologies. These 
frameworks need to address not only the capacity benefits but also safety 
and security challenges posed by these systems. Furthermore, the study 
should assess how Agricultural Decision-Making (ADMs) can enhance 
the efficiency of logistics operations, minimize corruption, and 
contribute to more inclusive and equitable schemes. This analysis would 
help identify areas where ADMs could be implemented to streamline 
logistics operations and improve their overall effectiveness in support-
ing agricultural production. By giving smallholder farmers access to 
market data, pricing, and demand, ADMs can aid in the creation of more 
inclusive and equitable programmes. This can assist farmers in more 
profitably planning their produce. ADMs may also be used to identify 
farmers who may be facing food insecurity, enabling policymakers to 
provide these farmers specialised assistance. This may result in more just 
and environmentally friendly agriculture systems that are advantageous 
to both farmers and consumers. 

Gender inequalities 
The challenges faced by women in agriculture are multiple and 

complex and they are particularly widespread in developing countries. 
Women farmers face numerous obstacles that limit their productivity 
and potential, including unequal land ownership, limited access to 
capital, training, and agricultural inputs, as well as cultural discrimi-
nation based on gender [170]. 

One of the most significant challenges faced by women farmers is the 
lack of access to land ownership. In many countries, women are not 
allowed to own or inherit land. This limits their ability to invest in their 
farms, make long-term plans, and access financing. Access to capital and 
financial services is another major challenge for women farmers. 
Women are often excluded from formal financial services such as loans 
and credit due to their lack of collateral and limited financial knowl-
edge. This limits their ability to invest in their farms, purchase inputs, 
and access markets. 

The use of AI algorithms in agriculture can potentially exacerbate 
these inequalities. AI algorithms are often trained on biased datasets, 
which can perpetuate existing gender discrimination in agriculture. 
However, responsible use of AI can also help to mitigate some of these 
inequalities and make agriculture more accessible to women. 

To promote gender parity in agriculture participation, intentional 
policies are needed to address discriminatory anomalies and use AI 
technologies to include women in new forms of work, entrepreneurship, 
and innovation. This could include policies aimed at increasing women’s 
land ownership, improving access to financial services, providing 
training and inputs, and promoting the use of AI to connect women 

farmers with markets and buyers. 
Overall, it is essential to address the challenges faced by women in 

agriculture to promote sustainable development and reduce poverty. By 
encouraging gender parity in agriculture participation and using AI 
technologies responsibly, we can help to ensure that women farmers 
have the resources, income, and control over their own projects that 
they need to succeed. 

Innovation and data access 
The agricultural sector has been transformed by the emergence of 

technology and the improvement of analytical tools. These advance-
ments have opened new opportunities for innovation, which are already 
being observed and are likely to multiply. The use of cutting-edge 
technology is not always necessary, as innovation can be achieved by 
increasing yields to generate data, digitizing physical assets, integrating 
data across industries, exchanging data, and encoding unique capabil-
ities. However, the use of large and valuable data faces constraints, 
including limited access and capacity in emerging economies and 
contractual rules that restrict public access to data [171]. 

In agriculture, increasing yields is the most relevant approach to 
generating data, with sensors installed on the equipment to improve 
accuracy and inputs. These data can be used to improve the design, 
operation, maintenance, and repair of assets, creating new and better 
services and business models. However, the use of big data and AI 
technology raises concerns about user privacy, which must be resolved 
before these innovations can be implemented on a large scale, particu-
larly in Africa. 

In the context of AI in agriculture, the exclusive property rights of 
data and their implications are illustrated using digital information on 
sequences. Although these advancements have transformed genomics 
and gene editing, the implications for agriculture and livestock have not 
received enough attention. At the macroeconomic level, the circulation 
of information and the governance of information on digital sequences 
are a current issue. 

Taking the example of Africa, the use of AI in agricultural infra-
structure raises several crucial questions [172,173]. These include how 
to promote the use of data for African agricultural innovations, how 
farmers and agricultural businesses can create value for their customers 
using data and analytical tools they own or could have access to, and 
who should own the data collected on farms. It is essential to address 
these questions to successfully implement AI in flourishing countries and 
develop new and innovative services and agricultural models. 

Climate change 
Global energy consumption and greenhouse gas emissions have 

skyrocketed due to the widespread and extensive use of digital tech-
nology, which is a major factor in climate change. Digital technology 
alone is predicted to use 20 % of global power by 2025 and produce 14 
% of greenhouse gas emissions by 2040, therefore this trend is projected 
to continue [174] . Huge volumes of data storage demand a lot of power, 
which greatly contributes to climate change, the effects of which are 
already disproportionately felt in developing nations. 

It is critical to investigate how AI and data initiatives could help 
developing countries cope with the consequences of climate change to 
solve this issue. However, it is significant to emphasise that, compared to 
other nations, flourishing nations are more consumed with pressing 
problems such as famine, drought, and political instability, and there-
fore measures to ameliorate the consequences of climate change 
generally take longer to develop and are less important. Investigating 
alternate data compression techniques might help eliminate the need for 
expensive, power-guzzling machines and data farms. 

Furthermore, it is important to focus on raising awareness and pro-
moting sustainable practices. This can be achieved by developing AI and 
data projects that are tailored to the specific needs and circumstances of 
these countries. For example, AI algorithms can be developed to help 
familial farmers optimise their crops and reduce water usage, or to help 
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local communities had better manage natural resources such as forests 
and rivers. In addition, shifting to renewable energy sources such as 
solar, wind, and hydropower is an alternative approach to mitigate the 
environmental impact of digital technology. The extensive use of fossil 
fuels to power data centres and computer facilities has led to an enor-
mous increase in greenhouse gas emissions. The utilization of renewable 
energy can significantly reduce the carbon footprint of digital technol-
ogy. Additionally, the implementation of AI and data initiatives can 
substantially help monitor and predicting the effects of climate change. 
AI algorithms can collect and analyse data on environmental factors 
such as weather patterns and soil moisture, helping us to understand the 
impact of climate change on agriculture, animals, and habitats [175]. 
Data obtained from these initiatives can be used to help communities 
plan and adapt to changing climate and inform policy decisions. 

Conclusion 

Considering the challenge posed by global warming, taking tangible 
measures toward more inclusive and ecologically sustainable models has 
become a global priority. 

The evolution of agriculture towards the new agro-food 4.0 will 
encourage businesses and farmers to invest in automation and artificial 
intelligence. Integration of green energy, slowly introduced into agri-
culture, will find technological support based on DL and other ap-
proaches to improve production and improve agricultural security. The 
current article proposes the use of computer vision technologies and 
artificial intelligence in the agricultural sector based on the globally 
used AI technologies reported in the literature. Importantly, this review 
provides a detailed understanding of promising applications in agri-
culture. The positive impacts of the use of AI in agriculture sector 
include:  

• The strength of AI methods in detecting, analysing, and estimating 
data surpasses that of traditional techniques, especially when uti-
lizing deep learning algorithms such as CNNs, RNNs, or other 
computational networks.  

• Wireless technology and IoT may use the latest communication 
protocols and sensors to better manage water resources and avoid 
excessive irrigation losses or lack of water.  

• Different integrated methods can be expended to create a sustainable 
environment and increased production. Applications include 
planting, fertilising, crop weeding, spraying, and harvesting.  

• AI can be implemented for distant meteorological monitoring and 
control of agricultural practises.  

• The use of AI algorithms in agriculture can potentially exacerbate 
gender inequalities, but responsible use of AI can also help mitigate 
some of these inequalities and make agriculture more accessible to 
women. 

• Innovation can be accomplished with the use of cutting-edge tech-
nology by encoding special talents, digitising physical assets, inte-
grating data throughout agriculture, improving yields to create data, 
and exchanging data.  

• Renewable energy sources and AI offer a promising solution for 
reducing the carbon footprint of agriculture. 
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