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A B S T R A C T

The Artificial Intelligence of Things (AIoT), a combination of the Internet of Things (IoT) and Artificial
Intelligence (AI), plays an increasingly important role in smart agriculture (SA). AIoT has been adopted in
many applications including agriculture, such as crop yield estimation, soil and water conservation, pest and
disease detection and supply chain management. While there are plenty of studies on AIoT applications in
healthcare, smart cities, manufacturing, and transportation, SA still has a small share of the reported research.
This paper presents a comprehensive review of the existing literature in AIoT and Federated Learning (FL) for
SA. It identifies current and potential challenges and provides research direction for the future investment in
both academia and industry.
1. Introduction

One of the main goals of the United Nations (UN) is to eradicate
hunger by 2030 (Pathan et al., 2020). The growth of the global pop-
ulation, estimated to reach 9 billion by 2050 and 11 billion by 2100,
emphasizes the critical need for a more sustainable and efficient food
production system. At the same time, many challenges, such as climate
change leading to high temperatures, water scarcity, soil degradation,
land use change and environmental pollution (Durai and Shamili, 2022)
will have a negative impact on the way food is produced worldwide.
Global reduction in agricultural land mass, for cultivation and animal
husbandry, due to rising water and desertification are already the cause
of food shortages. As a result, one of the major issues facing the world
today and in the future is a looming food crisis (Hu et al., 2022).

To meet the next decade’s production challenges, Smart Agriculture
(SA) has been proposed as a promising approach to improve agri-
cultural yields and increase food production. SA solutions have been
shown to improve farm management with soil, weather, crop, and
temperature monitoring leading to water, harvest, energy and supply
chain management (Katiyar and Farhana, 2021).

IoT and AI have already been successfully applied in healthcare,
transport and energy management over the past years. And, increas-
ingly, Artificial Intelligence of Things (AIoT), a combination of the
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Internet of Things (IoT) and Artificial Intelligence (AI), is providing so-
lutions in SA that combine automatic decision-making with the classic
IoT sensing and system controls.

Agriculture benefits from IoT devices’ ability to sense, process, and
transmit environmental data, such as vision, acoustic, and ambient
data, including temperature, soil humidity, and nutrition, from usually
vast distributed lands. AI, on the other hand, can be trained to analyze
sensor data, improving crop and livestock wellness and management
by making informed decisions about irrigation, fertilization, and pest
and animal control (Alzuhair and Alghaihab, 2023).

While storing and analyzing data on a centralized cloud brings many
benefits, including cost efficiency and high computing and storage ca-
pabilities, it also is ineffective or even infeasible for some applications
that generate high volumes of data, require a high level of scalability,
constant network connectivity, and, increasingly, data governance.
Hence as will be seen in the paper, AIoT uses different combinations
of edge, fog, and cloud computing to achieve its goals.

In particular, because of its requirements, SA may need dedicated
AIoT architectures and technologies. SA requires a high number of
devices to interconnect in real-time for decision-making. While con-
necting to the AI training is feasible, relying on a remote facility
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Fig. 1. Relation (overlap) between AIoT and SA.

for timely decision-making could be challenging outside of a main
metropolitan area. In this case, using edge computing can overcome
the limitations of the centralized cloud when it comes to the distributed
data analytics and decision-making that are essential for SA.

In addition, because SA may need different farms to cooperate,
emerging AI approaches such as Federated Learning (FL) are required.
FL enables distributed devices to train a shared AI model collabora-
tively while keeping the training data stored locally for privacy and
providing local automatic decision support (Ahvar et al., 2022). It is
now widely believed that when included in the AIoT toolkit, FL can
help to develop more efficient solutions for SA.

FL’s benefits have been proved already in other domains such as
healthcare (e.g., a study by Wassan et al. (2022)). Apart from FL, some
new techniques and technologies such as Digital Twins and Extended
Reality (XR) showed their future potential usage in SA.

In view of these recent developments, our paper main contributions
are as follows:

• We first review AIoT applications, architectures and technologies.
• We collate, review and analyze the existing AIoT-based solutions

for SA.
• We collate, review and analyze the existing architectures using

AIoT for SA.
• We collate, review and analyze the AIoT technologies have been

used for SA.
• We finally identify challenges of using AIoT for SA and provide

research direction for the future.

To illustrate our contributions, the intersection of SA and AIoT is
presented in Fig. 1.

The remainder of the paper is organized as follows: Section 2
reviews namely previous related or similar surveys. Section 3 presents
the methodology, Section 4 presents some AIoT background, Section 5
surveys the AIoT landscape for SA and Section 6 defines challenges and
future directions. Finally, Section 7 summarizes the salient contribu-
tions of the paper. The complete structure of the paper is available in
Fig. 2.

2. Related work

In this section, we first review the existing surveys on AIoT. Because
of the increasingly close relationship between AIoT and FL, we also
2

Fig. 2. Paper general structure.

present some of the existing studies on FL as they pertain to SA. Finally,
we present the existing surveys in SA, especially those related to AIoT
in their corresponding subsections.

2.1. Surveys on AIoT

There have been recent reviews of AIoT applications by researchers
in the field. Table 2 presents the previous work from three perspectives:
AI, IoT and communications. It can be noted that most of these do
not consider all three aspects of AIoT technologies combined. Table 1
also shows that there are only a few that mention SA as a potential
application.

2.2. Surveys on FL in AIoT

Looking at recent research, it can be seen that FL plays an increas-
ingly important role in AIoT architectures and systems. A summary of
some of the existing available reviews on FL is presented in Table 3.
While there is some research on the role of FL in AIoT solutions in
SA (Yin et al., 2022; Saha et al., 2020), at the time of writing, no survey
paper focused on investigating this topic.

2.3. Survey on AIoT in SA

As mentioned above, after a comprehensive review of the literature,
we found only a few AIoT surveys focusing on SA (i.e., Katiyar and
Farhana (2021), Gupta et al. (2020), Mitra et al. (2022) and Yang et al.
(2021)). The work reported in Katiyar and Farhana (2021) includes
solutions and technologies, while (Mitra et al., 2022) briefly discussed
architecture and networks as well as solutions and technologies. Au-
thors in Gupta et al. (2020), Yang et al. (2021) focused on SA security
and privacy. Adli et al. (2023) focused on a Systematic Literature
Review (SLR) for highlighting the increasing trends of AIoT publication
in SA. They summarized AIoT application and other AI/IoT enabling
techniques and challenges of AIoT adoption. See Tables 1 and 4 for
summarizing surveys in AIoT for all domains and specially in SA.

2.4. Research gaps

The results of our literature review can be summarized in Tables 1
and 4. It showed that there are only a few surveys on AIoT for SA. Non
of them considered the whole spectrum of AIoT in SA (i.e., architecture,
solutions and technologies). In addition, they did not consider details
of networking and communication. Unlike the existing surveys on AIoT
for SA, we provide a comprehensive survey on AIoT architectures,
solutions and technologies for SA and dwell on the details of net-
working and communication technology aspects essential to create the
underlying infrastructure. Also, we reviewed the related surveys in FL
as it is considered as the technology used in training the distributed ML
models in AIoT and similarly for SA which was not provided in related
surveys.
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Table 1
Existing AIoT surveys articles.

Refs. Application No. of Surveys

Pise et al. (2022), Chen et al. (2021), Pappakrishnan et al. (2021),
Jain et al. (2021), Qian et al. (2021), Alshehri and Muhammad
(2020), Alshamrani (2021), Amin and Hossain (2020), Chamola
et al. (2020), Durga et al. (2019), Tunc et al. (2021), Ali et al.
(2022) and Kakhi et al. (2022)

Smart Healthcare 14

Nozari et al. (2022), Salih et al. (2022), Pan and Zhang (2021) and
Barton et al. (2022)

Smart Industries 4

Molokomme et al. (2022) Smart Grids 1

Mitra et al. (2022), Katiyar and Farhana (2021), Gupta et al.
(2020), Yang et al. (2021) and Adli et al. (2023)

Smart Agriculture 5

Huang et al. (2021), Wazid et al. (2021), Patel et al. (2022) and
Sigov et al. (2022)

Smart (security) Management 4

Ghoreishi et al. (2022), Bronner et al. (2021) Smart Business 2

Guo et al. (2022) Smart Transportation 1

Seng et al. (2022), Kuguoglu et al. (2021), Wu et al. (2019), Dong
et al. (2021) and Zhang et al. (2023)

Smart Cities 5
Table 2
Summary of AIoT surveys on technologies.

Ref. AI IoT Communications

Wu et al. (2019) ✓ ✓

Zhao et al. (2020) ✓

Hao et al. (2021) ✓

Lin (2021) ✓

Pan and Zhang (2021) ✓ ✓

Altalak et al. (2022) ✓ ✓

Qazi et al. (2022) ✓ ✓

Vyas et al. (2022) ✓ ✓

Hashni et al. (2022) ✓ ✓

Guo et al. (2022) ✓

Ahmed et al. (2022) ✓

Esenogho et al. (2022) ✓ ✓ ✓

Our survey ✓ ✓ ✓

AI: Artificial Intelligence; IoT: Internet of things.

Fig. 3. Summary of the reviewed articles.

3. Methodology

This section explains the methodology used in this paper for inves-
tigating the related work including the used keywords, our research
objective and questions and the selection and quality assessment cri-
teria. This process was carried out in three major steps of planning,
reviewing and reporting. In planning, research objectives and research
questions were formulated, in the reviewing stage articles were selected
based on our selection and quality assessment criteria. Lastly, we
reported the findings of our research.
3

3.1. Research objectives

The major objective of this research is to investigate solutions and
architectures as well as technologies and challenges of AIoT and FL
for SA. To achieve this objective, we start by reviewing the AIoT and
FL related surveys as presented in Section 2 to show the trends of the
available surveys across AIoT application domains and briefly introduce
the available existing literature. As we moved to SA in Section 5 which
is the main targeted application of this research, we dwell into the
existing AIoT solutions for SA both the academia and industry solutions,
we considered architectures and technologies specialized for SA.

3.2. Research questions

This section explains the research as follows:

• Q1. What are the available AIoT-based solutions for SA (academia
and industry)?

• Q2. What are the specialized AIoT-based architectures used in SA?
• Q3. What are the AIoT technologies used in SA?
• Q4. What are the current AIoT challenges in SA and what are the

directions for the future?

3.3. Articles collection procedure

The articles used in this research were collected mostly from rel-
evant and reputable databases such as Elsevier (ScienceDirect (SD)),
IEEE Explorer, ACM Digital Library, MDPI, Springer published from
2018 to 2023. For finding the industrial solution, we relied on the list of
companies presented.1 To exhaust all the available search avenues, the
following keywords were used ‘‘AIoT Surveys’’ ‘‘Artificial Intelligence
of Things (AIoT) Applications’’, ‘‘AIoT-based Solutions for Smart Agri-
culture’’, ‘‘AIoT-based Architecture’’ ‘‘AIoT-based Architecture for SA’’,
‘‘AIoT Technologies’’, ‘‘AIoT Technologies for SA’’, ‘‘Surveys on FL in
AIoT ’’ and ‘‘FL for Smart Agriculture’’. We used inclusion and exclusion
criteria for article selection as presented in Table 5. Fig. 3 presents the
statistics related to filtered articles. Similarly, a quality assessment is
presented in Table 6.

1 https://ausagritech.org/about/what-is-ausagritech/

https://ausagritech.org/about/what-is-ausagritech/


Journal of Network and Computer Applications 228 (2024) 103905D. Muhammed et al.
Table 3
Existing surveys articles on FL applications.

Ref. Application No. of Surveys

Nguyen et al. (2022), Mahlool and Abed (2022), Pfitzner et al.
(2021), Antunes et al. (2022) and Ali et al. (2022)

Smart Healthcare 5

Pham et al. (2021), Zhou et al. (2021), Aledhari et al. (2020) Smart Industries 3

Briggs et al. (2021), Mothukuri et al. (2021), Campos et al. (2021),
Li et al. (2021), Ghimire and Rawat (2022), Hou et al. (2021), Li
et al. (2022a), Nguyen et al. (2021), Ali et al. (2021), Billah et al.
(2022) and Campos et al. (2021)

Smart (security) Management 11

Du et al. (2020) Smart Transport 1

Jiang et al. (2020), Zheng et al. (2022, 2021), Pandya et al. (2023)
and Ramu et al. (2022)

Smart Cities 4
Table 4
Existing surveys articles on AIoT for SA.

Ref. Title. Year Objective

Gupta et al.
(2020)

Security and Privacy in Smart Farming:
Challenges and Opportunities

2020 Studied the security and privacy in
smart farming ecosystems and outline
the multilayered architecture for
precision farming and present the
security and privacy issues in a
dynamic/distributed cyber–physical
environment. They also highlight
potential cyberattack scenarios.

Yang et al.
(2021)

A survey on SA: Development modes,
technologies, and security and privacy
challenges

2021 This paper surveyed the state-of-the-art
work related to smart development
modes, technologies, applications and
privacy and security.

Katiyar and
Farhana (2021)

SA: The Future of Agriculture using AI
and IoT

2021 Present the research work for agriculture
automation using sensors, agricultural
robots and drones as well as AI-driven
technologies to improve productivity.

Mitra et al.
(2022)

Everything you wanted to know about
SA

2022 Presents the solutions, technologies
trends, available datasets, network
options and deployment challenges.

Adli et al.
(2023)

Recent Advancements and Challenges of
AIoT Application in Smart Agriculture: A
Review

2023 Presents AIoT concepts, IoT smart
devices and AI techniques adoption, the
trends in increasing publication in AIoT
applications using SLR. Highlighted
application of AIoT and other AI/IoT
enabling techniques and challenges of
AIoT adoption.

Our survey Artificial Intelligence of Things (AIoT)
for Smart Agriculture: A Review of
Architectures, Technologies and
Solutions

2023 A comprehensive survey of AIoT for SA
considering AIoT architecture, solutions
and technologies. Also, reviewed the
related surveys in FL as it is considered
as the technology used in training
distributed ML models in AIoT and
similarly highlighted the challenges and
future directions of AIoT for SA.
Table 5
Inclusion/Exclusion method.

Inclusion Criteria

1 Title with all keywords in search string published between 2018 to 2023

2 Title with AIoT plus any of its application domains in the search string

3 Focusing on AIoT-based architecture

4 Focusing on AIoT technologies

5 Focusing on AIoT for SA and any of its 6 solutions

Exclusion Criteria

1 Title that does not include any of the AIoT application domains

2 Articles that are not within the context of the study domain

3 Articles published before 2018 or not peer review

4 Short articles or duplicated articles published by different journals
4
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Table 6
Quality assessment.

ID Question

Q1 Is the research objective defined clearly in line with the research
problem?

Q2 Are the research questions answered accordingly?

Q3 Does the research focus on AIoT and any of its applications
domains, architectures or technologies?

Q4 Does the research scope include FL for AIoT applications or SA
solutions?

Q5 Is the research report well elaborated and the experiment is clearly
explained?

Q6 Is the research findings valid and relevant to the study domain?
Fig. 4. AIoT background.

4. AIoT background

The combination of AI technologies with the IoT infrastructure
refers to AIoT (Ahvar et al., 2022; Dia et al., 2022). We can consider
two main forms for collaborating AI and IoT in AIoT systems: loosely
coupled (i.e., AI for IoT) and tightly coupled (i.e., AI on IoT). In
loosely coupled AIoT (e.g., a traditional combination/collaboration of
IoT and AI), the data is generated in IoT devices and forwarded to
a local or remote location (e.g., cloud facility) to be analyzed by an
AI-based method such as neural networks. In tightly coupled AIoT
(e.g., a modern combination/collaboration of IoT and AI), IoT devices
are equipped with AI processing capabilities and AI algorithms are
run on IoT devices partially or even completely. In other words, the
IoT devices have AI processing capabilities in tightly coupled AIoT.
The systems that use the loosely coupled form of collaborating AI and
IoT are called loosely coupled AIoT systems and the ones that use the
tightly coupled form are called tightly coupled AIoT systems (Ahvar
et al., 2022).

Loosely coupled AIoT already is improving traditional farmers prac-
tices (e.g., smart dynamic irrigation patterns instead of fixed scheduling
irrigation (Amatya et al., 2016)). Tightly coupled AIoT systems can
bring some benefits in comparison to the loosely coupled AIoT systems.
In traditional loosely coupled AIoT systems, data are generated by IoT
devices and should be transmitted to a remote location (e.g., a cloud
data center) for AI processing. In modern AIoT applications (e.g., many
smart agriculture applications), because of a high volume of generated
data, high scalability of networks and data privacy issues, it may not
be possible to transfer data to a remote location.

A broad perspective of AIoT architectures, technologies, and appli-
cations is presented in this section and summarized in Fig. 4.
5

Fig. 5. General AIoT applications.

4.1. AIoT applications

To start our wide-ranging survey, we review existing AIoT applica-
tions and propose a taxonomy where AIoT applications are classified
into two broad categories: city applications (i.e., smart cities) and
non-city specific as presented in Fig. 5. In cities, AIoT applications
target healthcare, buildings, offices, businesses, transportation, and
government (safety and security). More broadly defined AIoT applica-
tions include smart manufacturing, smart grids, and SA. To mention
examples, of each domain, a healthcare AIoT solution for identifying
persons of interest (POI) in COVID-19 analysis was implemented based
on far distance camera with low-resolution handling in Istiklal street
of Istanbul in Turkey.2 For transport example, we can refer to images
from the autopilot camera which with the help of AI are used to
automatically convert the wiper speed to the intensity of rain or snow
in Tesla (Slama et al., 2023).

4.2. AIoT architectures

To functionally distribute the needs of AIoT, several layered ar-
chitectures have been recently proposed that include some or all the
following features: devices for data acquisition, an edge/fog layer that
contains computing devices, for aggregation and pre-processing, and
gateways for connectivity to the cloud layer for storage and analysis.
In each architecture, the number of layers and the nature of the
operations performed at each layer can vary based on the specific
requirements of the targeted system. Because common need for data
gathering and processing, three-layer and four-layer architectures are
becoming almost standard.

2 https://github.com/vahit19/4DeepAnalytics.com

https://github.com/vahit19/4DeepAnalytics.com
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4.2.1. Layered models
Generally, the device layer (also called the data acquisition layer)

is where the sensing and measurement systems are located. This layer
may host numerous devices responsible for the generation and collec-
tion of data based on the target application. Different devices including
but not limited to sensors, actuators, and other embedded devices as
well as drones, cameras, smartphones, and radio frequency identifiers
(RFID) may be used as data sources in that layer. They are deployed
in specific areas based on the application requirements for sensing,
processing, and communicating the data amongst themselves and to the
other layers.

The edge/fog layer refers to the next layer that receives the raw or
processed data from the device layer performs aggregation and further
processing, including security and then sends the results to the cloud
layer using some form of communication interface. Although some of
the existing architectures consider the edge/fog layer as one, others
follow the OpenFog Consortium recommendations and make the dis-
tinction between fog and edge. While fog computing provides resources
(e.g., computing, storage and networking) anywhere from the cloud
to the end devices (the edge cloud continuum), edge computing may
be limited to computing locally (OpenFogConsortium, 2017; Ramya,
2021). As was stated in Digiteum (2022), ‘‘As a layer in between clouds
and edges, fog offers the advantages of both. It utilizes the cloud and
communicates directly with it to distribute data that does not require
immediate processing. Fog is also positioned nearer the edge at the
same moment. It uses local processing and storage resources for real-
time analytics and prompt event reaction. Fog is decentralized, with
numerous nodes, just like the edge. Fog, in contrast to the edge, has
a network architecture. Fog nodes are interconnected and can disperse
computing and storage to complete specific tasks more effectively. Edge
provides the lowest latency and fastest reaction to data because it is
the closest to end devices. The structure in edge computing is typically
more loosely coupled, with edge nodes handling data on their own’’.

Either part of the edge or fog layer or as a layer of its own, the
connectivity layer relays the data between layers. As an independent
layer, in some literature, it offers added services such as encryption,
and service and data discovery.

Finally, the cloud layer receives the data from all preceding layers,
performs data analysis and stores the data for future use. The cloud
layer enables end-users to access the relevant data virtually for their
specific tasks. Some architectures use the cloud as the uppermost layer,
whereas others further separately use the application layer as an upper
layer.

Examples of specific architecture illustrate the concept. The au-
thors in Wazid et al. (2021) presented the architecture of AIoT as
a blockchain-based secure framework consisting of three major com-
ponents: IoT devices/users, gateways and cloud. In this study, in the
second layer, the gateway nodes convert the huge amount of received
data from the smart IoT devices into partial blocks and forward them
to the cloud server. The cloud server converts the partial block into
the full block and forwards it to the Peer-to-Peer Cloud Server (P2PCS)
network for mining and incorporates it with the blockchain to secure
the data. Another layered architecture with a different nomenclature
is proposed in Yu et al. (2021). This architecture consists of the data
layer, the security layer, the processing layer (with AI modules) and the
application layer which focuses on securing the data from attacks and
threats by malicious agents preventing their access. At the data layer,
data is generated and transmitted to the processing layer through the
security layer to prevent and recover from attacks.

Hence, after review, a common architecture emerges as is shown in
Fig. 6. It consists of four layers. In the device layer, end devices are
deployed for gathering data related to a particular application domain;
the generated data is then sent to the edge/fog layer through the
connectivity layer for further processing. Finally, the data is transmitted
to the cloud for processing and storage.
6

Fig. 6. AIoT common architecture.

Depending on the second layer choice, we define 4-layered ar-
chitectures Fog–Cloud (F–C), Edge–Cloud (EC) and Edge/Fog–Cloud
(E/F–C).

In addition, the AI mechanisms can be centralized or distributed in
the network across every layer, as illustrated in Fig. 7. In a centralized
deployment, AI processing occurs only in one of the layers of the
architecture or even in only one device in the edge cloud continuum, as
shown in Fig. 8. Whereas in a distributed deployment, AI inference can
occur across the devices themselves, with support at the edge/fog and
cloud layers in a vertically, horizontally or hybrid manner as shown in
Fig. 9 (Ahvar et al., 2022).

It is in the distributed deployment that FL becomes an asset. In FL,
ML algorithm training is performed across multiple decentralized edge
devices or servers each holding local data samples. FL trains the model
from the local data generated and sends the local model update to the
server for global aggregation. This improves the model performance
because the client nodes can use the global modeling results from
many nodes received from the server to train their local model while
reducing the network traffic sent to the central server. FL also provides
improvements in data privacy and security by keeping the data at the
source.

Similar, to FL, distributed learning is the process of training ML
models using multiple computing resources that are interconnected.
Rather than relying on a single machine, distributed learning har-
nesses the collective computational power of a network of machines
or nodes. By dividing the workload and data across multiple nodes,
distributed learning enables parallel processing, leading to faster and
more efficient training of machine learning models (Gülen, 2023).
However, in centralized learning (CL), environmental row data is re-
quired by the clients which are transmitted to the central server after
initial pre-processing to perform respective model training tasks (heavy
computation) (Drainakis et al., 2020a). There are some studies in
different domains comparing central learning and FL from different
aspects (Drainakis et al., 2020a,b).

Getting help from distributed learning and FL, and depending on
applications and required performance, different layered AIoT archi-
tectures have been used in related work. A summary of the common
AIoT architectures is presented in Table 7 with their corresponding
application areas. Moreover, we identified the level of AI and IoT
coupling in these architectures. The most common layered architecture
studied in our survey is E–C architecture. This choice can be related
to a lack of standard definition and support for the fog layer. Tightly
coupled have been already proposed in most of the domains. SA AIoT
architectures will be addressed separately in Section 5.
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Fig. 7. AI deployment in AIoT architectures.

Fig. 8. Centralized AI deployments (Ahvar et al., 2022).

Fig. 9. Distributed AI deployment (Ahvar et al., 2022).
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Table 7
General AIoT architectures and systems.

Ref. Architecture NL AIoT Systems Application

E/F–C E–C F–C C-B Loosely Tightly

Zhang and Tao (2020) ✓ 3 ✓ General
Wazid et al. (2021) ✓ 3 ✓ Security
Liu et al. (2021) ✓ 4 ✓ Industry
Yu et al. (2021) ✓ 4 ✓ Security
Ning (2021) ✓ 4 ✓ Smart grid
Seng et al. (2022) ✓ 3 ✓ Smart Homes
Mitra et al. (2022) ✓ 3 ✓ Smart Agriculture

NL: Number of Layers; E/F–C: Edge/Fog–Cloud; E–C: Edge–Cloud; F–C: Fog–Cloud; C-B: Cloud-Based; Loosely: Loosely coupled; Tightly: Tightly
coupled.
Fig. 10. Classification of AI/ML technologies (Wazid et al., 2021).
4.3. AIoT technologies

In this section, we divide AIoT technologies into AI, IoT and com-
munications to present a comprehensive overview.

4.3.1. AI/ML technologies
AIoT uses extensive ML to implement model-based and data-centric

decision-making. There are many classifications of AI/ML encompass-
ing supervised, unsupervised and re-reinforcement learning. They in-
clude a wide variety of intelligent applications such as natural lan-
guage processing, speech recognition, virtual agents, decision manage-
ment, bio-metrics, robotic process automation technologies, etc. Fig. 10
proposed by Wazid et al. (2021) summarizes the different approaches.

As an application of distributed ML and as mentioned before, FL
enables distributed devices to collaboratively train a shared AI model
while keeping all the training data locally. With the development of
FL and the increasing computing power of edge devices, FL is rapidly
becoming an effective solution for data privacy-preserving in the AIoT
domain. By locating the computation in edge devices and ensuring that
the user’s data does not leave the local area, FL protects user privacy
against leakage (Zhang et al., 2020; Yin et al., 2022).
8

4.3.2. IoT technologies
IoT technologies are the backbone of AIoT applications as they

enable data acquisition across different types of hardware devices
(e.g., sensors, smart cameras, RFID, embedded systems, drones, smart-
phones, etc.) and provide the connectivity to enable the devices to com-
municate with each other and forward the data to a target destination
for processing and storage (Chang et al., 2021).

An IoT devices classification model presented by Cvitić et al. (2021)
for classifying traffic features generated by IoT devices and analyzed
the possibilities of applying those features for classifying IoT devices.

IoT technologies can be further divided into three: hardware, soft-
ware and networking technologies. IoT hardware collects the data.
IoT software supports data normalization, analysis, manipulation and
security as well as, when needed, AI model deployment. Various IoT
software solutions are readily available (Knud, 2019; Satyajit, 2022).
IoT connectivity includes the actual networking technologies to connect
the devices to the gateways and the cloud. Different IoT hardware and
software are used in AIoT and are presented in Fig. 11. Connectivity in
IoT will be explained in the next section (Note that connectivity and
communication are used in this paper interchangeably).
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Fig. 11. Classification of IoT technologies.
Fig. 12. Communications technologies.
4.3.3. Communications technologies
Different communications technologies are used to connect AIoT de-

vices to each other, and to edge/fog or cloud nodes. These technologies
can be further divided into three main short, medium and long-range
groups as shown in Fig. 12. Table 8 also compares the communications
technologies based on technology standards, data rate, frequency and
range.

Long-range communications technologies including both wired and
wireless, such as General Packet Radio Service (GPRS), Long-Term
Evolution (LTE), Third Generation (3G), Fourth Generation (4G), Fifth
Generation (5G) and soon Six Generation (6G) are mainly used for
communications between the edge/fog and the cloud. For SA, 5G and
6G technologies will most likely predominate in the future because
of high reliability, low latency, wide communications ranges and high
data transmission capabilities (Qazi et al., 2022). However, deploying
these technologies in rural areas is a major challenge due to instal-
lation costs (with small cells) and the lack of access to high-speed
backhauls. In this case, private networks (e.g., private 5G) can already
be used.3 Experimental wireless and long-range optical platforms are
also considered.4

3 https://www.uctel.co.uk/blog/private-5g-and-agriculture-the-digital-age
4 https://arawireless.org
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For communications between the end-devices layer and edge/fog
layer, medium-range solutions such as Narrowband Internet of Things
(NB-IoT), Long Range Wide Area Networks (LoRaWAN) and SigFox,
and short-range solutions such as Near Field Communication (NFC),
RFID, Bluetooth, Z-Wave, Wireless Fidelity (WIFI), Building Automa-
tion and Control networks (BACnet) and ZigBee are used.

For the literature, the most commonly used communications tech-
nologies well-adapted for SA at the end-devices layer of SA are Lo-
RaWAN, ZigBee and BACnet due to their low power consumption, small
size, ease of implementation, simplicity, scalability, range (usually
medium) and in the case of BACnet heritage from industrial automa-
tion. In addition, there are some studies to adapt WIFI for SA, such as
‘‘WIFI-based long distance (WiLD)’’ proposed by Ahmed et al. (2018)
for monitoring and controlling smart farming in rural areas because of
its low cost.

It is worth mentioning that an investigation and comparison of the
performance of different wireless communications technologies (WIFI,
LoRaWAN and ZigBee), in terms of energy consumption in agriculture
monitoring, showed that LoRaWAN works well for SA when network
lifetime and energy consumption are priorities (Ray, 2018; Sadowski
and Spachos, 2020). There is also an increasing number of sensors that
support LoRa and that should enable its penetration in SA.

https://www.uctel.co.uk/blog/private-5g-and-agriculture-the-digital-age
https://arawireless.org
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Table 8
Comparison of communications technologies.

Tech Stand Range Freq Max.DR

ZigBee ZigBee alliance, IEEE
802.15.4

less than 1 km 902–928 MHz, 2.4 GHz 250 Kbps

Z-wave Z-wave 100 m 868 MHz 100 Kbps

WiFi IEEE 802.11 100 m 2.4–60 GHz 10 Mbps

Bluetooth IEEE 802.15.1 100 m 2.45 GHz 1–3 Mbps

RFID Many standards 1 m 13.56 MHz 423 Mbps

NFC ISO /IEC 13157 0.1 m 13.56 MHz 106 kbps–424
Kbps

BACnet ANSI/ASHRAE Standard
135

1.2 km (RS-485) Depends on physical layer
used (Ethernet, RS-485)

10 Mbps to 100
Gbps (Ethernet),
9.6 kbps to
115.2 kbps
(RS-485)

LoRa LoRa alliance 15 km 915–928 MHz 50 Kbps

SigFox SigFox Collaboration of
ETSI

20+km 868 and 915–928 MHz 100 Kbps

NB-IoT 3GPP 1 km (urban),
10 km (rural)

700, 800, 900 MHz 200 Kbps

GPRS 3GPP 25 km/10 km GSM 850, 1900 MHz 171 Kbps

LTE 3GPP 28 km/10 km 700–2600 MHz 0.1–1 Gbps

3G/4G UMTS/LTE 26 km/28 km GSM 850, 1900
MHz/700–2600 MHz

400.73
Mbps/0.1–1
Gbps

5G IEEE 802.11ac/ITU
IMT-2020

28 km 700 MHz–72 GHz 20 Gbps

6G IEEE 802.11ax 10 THz 1 Tbps

Tech: Technologies; Stand: Standards; Freq: Frequency; Max.DR: Maximum data rate.
5. Smart agriculture (SA)

The agricultural evolution started with Agriculture 1.0, with in-
digenous tools for farming, then continued to Agriculture 2.0, with
fertilizers and tractors then to Agriculture 3.0, where monitoring sys-
tems and decision systems were introduced, and finally to Agriculture
4.0, where smart farming (SA) is currently in use (Liu et al., 2020)
with automation and embedded-decision systems. As mentioned before
AI and IoT are inherently linked to SA. Specific technologies that
can be included in agriculture 4.0 include robotics, blockchain and
other cyber-security technologies, drones (Unmanned Aerial Vehicles
or UAV), satellites and of course a wide variety of sensors including
novel devices using nanotechnology (Mitra et al., 2022).

Traditional (conventional) farming of levels 2 and 3 in the evolu-
tion, in which traditional techniques are used for crop cultivation (Du-
rai and Shamili, 2022) is still dominant in the industry. SA has special
requirements such as sensing, processing and connectivity that are still
not available everywhere. In addition, AIoT solutions designed for other
non-SA use cases may not comply with SA requirements. However, we
have seen that the technologies presented in Section 4.3 can be adapted
to SA when they meet a wide range of requirements since SA targets
open-field solutions (with drones for example) as well as greenhouses
and vertical farms (Controlled Environment Agriculture (CEA)).

Some studies in SA compared the result of AIoT-based solutions
with traditional solutions called farmer treatment (FMR), which is the
normal practice of the local farmers (e.g., smart irrigation comparison
in Amatya et al. (2016)).

While SA may or may not include AI, in this section, we focus on
the AIoT architectures and solutions that have been adapted to SA.

5.1. AIoT solutions for smart agriculture (SA)

AIoT solutions in SA may need to support quite large-scale envi-
ronments. A tomato farm which was referred in the study on Ambient
10

IoT in 3GPP release 19 (AmbientIoT3GPP, 2023), is a good real case
to show the scale of the problem in SA. This farm is using ambient
power-enabled IoT devices, which are either battery-less or with limited
energy storage capability (e.g. several hundred micro-watts) getting
energy through the harvesting of radio waves, light, motion, heat
or similar sources. The optimal scale considered for this greenhouse
construction is 8 10 m span, 80 100 m length. A single greenhouse
area reaches nearly 70,000 square meters, equivalent to ten standard
football field sizes. A team of eight people controls this greenhouse
in front of the computer and knows everything that is going on in
the greenhouse. ‘‘For example, the temperature and humidity in each
area of the 70,000 square meters greenhouse, the temperature of the
underground heating tube, the concentration of carbon dioxide are how
much, whether the fan is opened, and whether the nutrition is enough
for each tomato’’ (AmbientIoT3GPP, 2023).

We can classify AIoT-based proposed SA solutions into academic
and industrial and further categorize the academia solutions into six
sub-classes as shown in Fig. 13 (Katiyar and Farhana, 2021; Mitra et al.,
2022), crop, soil, water and disease management, enhanced harvesting
techniques and supply chain management. These classes can inter-work
to provide special use cases. In this section, we analyze each solution
in terms of: type, features, ML model if appropriate and data sources.
This is summarized in the form of specific tables in their corresponding
subsections.

5.1.1. Academic solutions
The details of SA academic research are presented below.
Crop Management: Crop management is a set of agricultural prac-

tices to improve growth, development and yield. It begins with seedbed
preparations, sowing and crop maintenance, including pest and disease
detection, and it ends with harvest, processing, storage and distribu-
tion. Hence it includes end-to-end crop production activities that are
under the responsibility of the producer.

Several crop management systems consider growth monitoring and
yield prediction (Reddy and Kumar, 2021; Schwalbert et al., 2020;

Kumar et al., 2019a) for different types of production such as wheat,
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Fig. 13. AIoT solutions for SA.
maize, rice, coffee, tea, cherries, etc. Crop disease detection (scouting)
and remediation is the focus of Jiang et al. (2019), Guo et al. (2020).
Numerous crop recommendation approaches using different models
are available in Kulkarni et al. (2018), Durai and Shamili (2022).
Crop recommendations are also the focus of many other papers (Doshi
et al., 2018; Kumar et al., 2019b; Suchithra and Pai, 2020; Pawar and
Chillarge, 2018; Chougule et al., 2019; Patel and Patel, 2020; Kedlaya
et al., 2021; Patil et al., 2021; Pande et al., 2021; Sadia et al., 2021).

More recently, a SA soybean crop yield prediction using FL was the
topic of Manoj et al. (2022). In this paper, the researchers compared
the performance of FL, Deep Learning (DL) and other more generic
ML for the prediction of soybean yield. The result showed the overall
performance of the comparison for the validation set metrics: FL using
ResNet-16 Regression outperformed ML and DL but at the expense
of added complexity. In addition, Durrant et al. (2022) proposed a
data-sharing approach for improving production optimization through
soybean yield prediction using a variety of ML approaches including
FL, Convolutional Neural Networks (CNNs), rectified linear activation
function (ReLU), recursive neural networks (RNN), long short-term
memory (LSTM) and multi-layer-perceptron (MLP) on remote sensing
images, weather and soil data. The results indicated that even simple
approaches can give improved measurements compared to manual
evaluation.

While AI shows promise across all research papers, factors that
have been rarely considered in academic research are the costs of
investments, the price of the targeted crops and the added revenue
generated by the SA operation. Authors of Priyadharshini et al. (2021)
used traditional linear regression (LR) and Neural Networks (NNs) to
consider the combined effects of the cost of cultivation, crop price mod-
eling, nutrient contents, rainfall and temperature data. They showed
that data-driven and AI approaches in SA can improve revenues by
better planning and forecasting.

Soil Management: There are different types of soil and many
crops require specific soil types, fertilization and nutrients for optimum
growth and production. There are several published use cases in soil
management including soil type classification (Vincent et al., 2019),
land recommendation focus (Patel and Patel, 2020), soil quality mon-
itoring (Murugamani et al., 2022), moisture monitoring (Araya et al.,
2020; Bhattacherjee et al., 2020), overall soil health monitoring (Jain
et al., 2020), salinity estimation (Klibi et al., 2020), nutrient content
analysis (Dong et al., 2018), and soil manure composition (Ather et al.,
2022; Chang et al., 2019). As part of soil management, carbon farming
is a new agricultural method by which sequestering atmospheric carbon
in crop vegetation, soil and biomass reduces atmospheric greenhouse
gas emissions. At the same time, the carbon sequestered in plant ma-
terial and soil can improve farm productivity and increase soil health
including aiding plant growth, building drought and flood resistance,
increasing soil water retention capacity and decreasing the amount of
fertilizers used in the farm. Due to some governmental policies for
11
encouraging carbon farming, more and more farmers are engaging in
using this practice (Moinet et al., 2023; Feng et al., 2023; Payen et al.,
2023) as presented in Table 10.

Water Management: Water management in agriculture includes
practices that cover both the quality and the quantity of water used.
As an important component of SA, water management uses smart irri-
gation systems to properly control the use of water (Tomaszewski and
Kołakowski, 2023). There are several known use cases in smart water
management such as AIoT solutions for real-time water quality moni-
toring (Wang et al., 2021; Chiu et al., 2022; Alahi et al., 2018). In Abi-
naya et al. (2019), Miao et al. (2022), authors used water analysis to
evaluate fish well-being in a fish-farm operation. Guillén-Navarro et al.
(2020), focused on optimization of water consumption, using anti-frost
sprinkler irrigation technique. A real-time soil wetness monitoring for
water management in irrigation is the target of Nursyahid et al. (2019).
A use case for managing hydroponic farming water management is
developed in the paper of Mehra et al. (2018). The research presented
in Mohammed et al. (2019), Dahane et al. (2020) focused on real-time
smart irrigation, while Usmonov and Gregoretti (2017) proposes a drip
irrigation control system for irrigation control. A flood observation and
early warning system using AIoT (Sung et al., 2022) was presented
to effectively forecast floods using a fuzzy algorithm. A special use
case, presented in Manikandan et al. (2022), addressed paddy rice
irrigation by considering the most important growth parameters in rice
including the crop growth level. Evapotranspiration (ETo) evaluation
was available in the papers of Antonopoulos and Antonopoulos (2017),
Nema et al. (2017), Elbeltagi et al. (2020) and Elbeltagi et al. (2022)
for requirements, estimation, calculation and prediction. ETo is an
important derived parameter needed to evaluate how plants react to
the irrigation and environmental humidity. The research focused on
predicting ETo using different ML models. As presented in Table 11,
most of the papers on water and irrigation considered soil moisture,
humidity, temperature, oxygen, water level and pH as important pa-
rameters. However, Wang et al. (2021) also considered nitrates and
phosphates concentration (Nitrate-Nitrogen (NO3-N), Phosphate (PO4),
Nitrite-Nitrogen (NO2-N), Ammonia-Nitrogen (NH3-N)) and other pa-
rameters. For open field SA, Antonopoulos and Antonopoulos (2017),
Nema et al. (2017), Elbeltagi et al. (2020) and Elbeltagi et al. (2022)
considered weather, solar radiation, rain forecast, rain probability and
wind speed also to have accurate models of water consumption.

In the AI realm, Fog-assisted FL (FogFL) (Saha et al., 2020) proposed
a smart irrigation scheduling application where sensor nodes monitor
weather and soil data and communicate the data to the edge devices for
the local model update. The local model is forwarded to the fog node
for local aggregation and after certain rounds, the cloud application
selects an optimal fog node, based on a greedy heuristic approach, to
do the global aggregation. The FogFL framework reduced the global
aggregation rounds, communication latency and energy consumption
of the resource-constrained edge devices and increased the reliability of
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Table 9
Crop management solution.

Subsolution Ref. Features ML model Data source Comments

crop monitoring
Kumar et al. (2019a) images OpenCV private growth prediction

Torres-Sanchez et al.
(2020)

temperature MLR, MNLR private predict shelf life
quality losses

Mehra et al. (2018), Jung
et al. (2020)

water level, pH,
temperature,
humidity, and light
intensity

ANN, NARX and
RNN-LSTM

private action control
prediction

crop
recommendation

Reddy et al. (2019) depth, texture, pH,
soil color, water
holding

CHAID, KNN, Naive
Bayes

private predicting crop to
the farmers

Setiadi et al. (2020) weather, yields,
selling prices

Naive Bayes public (BMKG) suggesting suitable
crop to farmers

Doshi et al. (2018) temperature and
rainfall

Naive Bayes, SVM,
RF

public selecting crop to
farmers

Kumar et al. (2019b) soil color, pH,
rainfall, temperature

SVM,DT, Logistic R public crop
recommendation

Patel and Patel (2020) soil types, quality,
crop, climate, water

KNN, SVM private predicting crop to
the farmer

Pande et al. (2021) crop, year, season,
soil type, area,
region

SVM, KNN, ANN,
RF, MLR

public crop
recommendation

Durai and Shamili (2022) pH, rainfall Naıve-B, Logistic-R,
SVM, DT, RF, KNN,

public (Kaggle) predict crop,
pesticides, weed and
cost

Priyadharshini et al.
(2021)

rainfall,
temperature, pH,
soil type, NPK and
location

NN and Linear-R public (Kaggle) profit analysis of
crops based on the
previous data

fertilizer recommendation Haban et al. (2020) NPK, season Fuzzy public predict fertilizer

yield prediction

Manoj et al. (2022) crop, soil,weather FL,ResNet-
16,ResNet-28

public soybean yield
prediction

Durrant et al. (2022) images, weather,
soil

FL,CNN, ReLU,
RNN, LSTM MLP

private data sharing for
soybean yield
prediction

iron deficiency prediction Yu et al. (2022) images FL public soybean iron
deficiency chlorosis
prediction
Table 10
Soil management solution.

Subsolution Ref. Features ML model Data source Comments

soil type
classification

Vincent et al.
(2019)

soil texture, granular,
water content, degree
saturation, pH, salinity

ANN, MLP private land suitability
assessment

land
recommendation

Patel and
Patel (2020)

soil types, soil quality,
crop, climate, water
demand

SVM, KNN public land
recommendation

soil quality
monitoring

Murugamani
et al. (2022)

soil moisture, soil pH,
humidity temperature

SVM private assessment of soil
quality

soil moisture
monitoring

Araya et al.
(2020),
Bhattacherjee
et al. (2020)

images SVR, RF, ANN,
RVR, BRT

private soil moisture
prediction

soil health
monitoring

Jain et al.
(2020)

images SVR, RF private soil health
assessment

soil salinity
monitoring

Klibi et al.
(2020)

images SVM,AE, KNN,DT private soil salinity
prediction

phosphorous
monitoring

Dong et al.
(2018)

images CNN private soil phosphorus
prediction

soil manure
composition

Ather et al.
(2022)

soil pH, temperature, and
NPK

ANN public manure prediction

carbon sequestering Moinet et al.
(2023), Feng
et al. (2023)
and Payen
et al. (2023)

soil nutrient, retention Nill Nill reduce atmospheric
carbon
12
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Table 11
Water management solution.

Subsolution Ref. Features ML model Data source Comments

water quality
monitoring

Wang et al.
(2021)

NO3-N, PO4, NO2-N,
NH3-N

GRNN, MPR laboratory data water quality

Abinaya et al.
(2019)

temperature, pH,
dissolved oxygen, water
level, foul smell,
ammonia

Naive Bayes private aquaculture water
quality monitoring and
control

Miao et al.
(2022)

dissolved oxygen, pH,
temperature

DL private water quality

Chiu et al.
(2022)

pH, temperature,
dissolved oxygen,
turbidity

ANN private fish fond water quality
monitoring

anti-frost sprinkler Guillén-Navarro
et al. (2020)

temperature, humidity,
wind speed

LSTM public (SIAM) accuracy to predict low
temperature

soil wetness
monitoring.

Nursyahid et al.
(2019)

soil moisture Linear regression private soil moisture
monitoring

irrigation
monitoring

Dahane et al.
(2020)

soil moisture, air
temperature, air
humidity

LSTM, GRU private optimizing water
resources

Rahmouni et al.
(2022a)

soil moisture,
temperature, humidity,
barometric pressure

not specify private Irrigation prediction

flood monitoring Sung et al.
(2022),
Manikandan
et al. (2022)

water level, rainfall
intensity, water speed
land slop

Fuzzy private flood prediction
accuracy

irrigation
scheduling

Alves et al.
(2023)

weather, soil moisture,
DAP, rain forecast

Penman Monteith,
Fuzzy

private water saving

Souza et al.
(2020)

soil moisture, weather,
rain forecast, ET

fuzzy private water saving

Granata (2019) temperature, solar
radiation, wind speed,
humidity

ANN public evapotranspiration
estimation

Elbeltagi et al.
(2020, 2022)

weather data ANN public evapotranspiration
prediction

Başağaoğlu et al.
(2021)

weather data NGBoost-XGBoost,
probability

public evapotranspiration
prediction

Saha et al.
(2020)

soil moisture,
temperature, humidity

FL, MLP, ReLU public watering planning
h
d
s
s
r
o

d
w
F
d
a

t

the system by reducing dependency on a centralized entity. The water
management solutions are summarized in Table 11.

Disease Management: Pests and diseases are major challenges that
affect the quality and quantity of crop production. Crop growth is an
important element in the optimization of adequate food production and
is affected by disease and stress including, as seen previously, improper
irrigation, biotic stress, diseases and soil salinization (sodium chloride
(NaCl) which occur naturally or due to improper anthropogenic ac-
tivities). Disease prediction, detection and remediation are thus major
research areas in SA. Disease and stress identification and prediction
can help in providing more food productivity (Udutalapally et al.,
2020) by allowing us to determine the best approaches to remediation.

Plant stresses are either biotic (infectious) or abiotic (non-infect-
ious). Biotic stresses are usually caused by infection causal agents
such as fungi, bacteria, parasitic plants, viruses and nematodes. The
non-infectious stress (abiotic) is caused by nutrient deficiencies, poor
farm management, or unfavorable environmental conditions. These in-
clude too-low or too-high temperatures, inappropriate moisture levels,
high winds or uneven wind speed, drought or flood, soil compaction,
frequent and heavy rain, improper water management, deficiency or
excess of nutrients and chemical injury caused by pesticides or salt.

There are several use cases in crop disease management (scouting)
in the literature. They include disease detection and prediction, weed
monitoring, disease classification, and pest monitoring, detection and
13

classification. They are listed in Table 12. Disease management in these o
solutions are facilitated by the emergence of high-quality hyperspectral
cameras and libraries of image processing algorithms.

One approach of particular interest is an FL-based method using
UAVs imaging for disease identification and classification is presented
in Khan et al. (2022). In this paper, UAVs on four different farms
locations are used to detect pest occurrences. The proposed pest classi-
fication solution accurately classified the nine available pests in Kaggle
pest datasets using FedAvg. In research conducted in Patros et al.
(2022), another FL framework was developed for rural weed detection
using hyper-spectral pasture images captured from three different sites.

Smart Harvesting: Smart harvesting can be performed with the
elp of autonomous harvesters and robots. Smart harvesting has used
ifferent types of sensors and imaging systems such as ultrasonic sen-
ors, global navigation satellite systems (GNSS), depth cameras, single-
hot multi-box detectors, RFID, Three-dimensional (3D) sensors and
ed, green and blue (RGB) cameras to guide the harvester and define
ptimal times for collecting the crops.

Several solutions have been published in smart harvesting. Object
etection is the focus of Chen et al. (2020), Cheng and Zhang (2020),
hereas the paper in Hsu et al. (2022) targeted fruit classification.
inally, the authors in Paul et al. (2021) used color recognition to
etermine the ripeness of crops and decide on the best harvesting times
s presented in Table 13.
Supply Chain Management: Supply Chain Management (SCM) is

he process of planning, implementing and controlling the operations

f the supply chain to meet customer requirements as efficiently as
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Table 12
Disease management solution.

Subsolution Ref. Features ML model Data source Comments

disease monitoring

Jiang et al. (2019) images CNN GoogleNet
inception, rainbow

public apple leaf disease
detection

Pallagani et al.
(2019), Udutalapally
et al. (2020)

images CNN public crop disease
prediction

Bhatia et al. (2021) images Tensoflow public crop disease
prediction

Li et al. (2022b) images InceptionV3, ViT,
MobileNet

public plant disease
detection

Chatterjee et al.
(2021)

diseases symptoms,
behavior changes

Fully-Connected
NN(FCNN)

private cow disease
prediction

Chen et al. (2019) temperature,
humidity, rainfall,
barometric pressure

CNN private rice blast disease
detection

Antico et al. (2022) images FL, CNN, public maize disease
prediction

Saberi Anari (2022) images Multiple SVM public classifying images of
crop disease

disease detection
and control

Murugamani et al.
(2022)

images SVM private detect and control
cotton leaf diseases

Li et al. (2022d) images ViT public detect and control
cotton leaf diseases

pests management

Liu et al. (2019) images CNN public pests detection and
classification

Chen et al. (2020) images YOLOv3, CNN,
LSTM

private pest identification

Guo et al. (2020) images Chan–Vese, RPN public pest identification

Khan et al. (2022) images FL, CNN,ResNet-
101,ResNet50

public pests management

Patel and Patel
(2020)

soil types, pH,
electric conductivity

KNN, SVM private pesticide
recommendation

weeds
management

Partel et al. (2019) images YOLOv3 with CNN private weed detection,
mapping, spraying

Patros et al. (2022) images FL,ANN, ReLU, private unwanted weeds
management
Table 13
Smart harvesting solution.

Subsolution Ref. Features ML model Data source Comments

object detection Cheng and
Zhang (2020)

images YOLOv4, CNN
ResNet

public flower detection
and classification

fruit
classification

Hsu et al. (2022) images CNN,
YOLOv3-tiny

Private dragonfruit
ripeness
prediction

color recognition Paul et al.
(2021)

images Naive Bayes private cultivation
prediction
possible. The use of AI in SCM is currently a major research area.
AIoT can have an important impact on SCM in SA: SCM defines the
requirements at each layer of food production that AIoT can meet.
Supply chain management contributions in SA include (Ahamed and
Vignesh, 2022; Nahr et al., 2021; Nozari et al., 2022; Liu et al., 2016)
dedicated to ensuring a secure food supply chain and safe delivery of
the food items (see Table 14). In addition, a technical solution based on
FL was presented by Durrant et al. (2022) that used decentralized data
to develop a cross-silo ML model. This solution facilitates data sharing
across the supply chain for improving production optimization through
soybean yield prediction. The authors also provided potential use cases
in which such methods can assist in other problem settings.

5.1.2. Industrial solutions
There are an increasing number of industrial solutions presented

by different companies helping farmers to make proper decisions in
managing their farms. Some are presented in this section.
14
For example, there are SA solutions delivered by Nokia in several
countries in the series of projects called real action (Nokia, 2023; Aero-
Farms, 2021). In India, Nokia in collaboration with Vodafone started
the pilot project across Indian states in 100 locations in which 50,000
farmers are expected to benefit from the proposed solution, SmartAgri,
in improving their productivity and income. More than 400 sensors
were installed as part of the project across over 100,000 hectares
of farmland. This solution uses Nokia’s Worldwide IoT Network Grid
(WING). For crop management and includes smart pesticide control,
smart irrigation, a platform for commodity exchange and proactive
information sharing frameworks on weather and crops which offers
weather forecasts and information on irrigation management and sup-
ports local languages (NS Agriculture Staff Writer, 2020). Also in 2019,
Nokia piloted a Smart Agriculture-as-a-Service in Algeria.

Another existing solution is from Metos (by Pessl) in Austria for
disease management which provides more than 80 disease management
models for more than 40 different crops. The solutions are distributed
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Table 14
Supply chain management solution.

Ref. Features ML model Comment

Ahamed and
Vignesh
(2022)

autonomous vehicle,
robot

DLT food supply chain

Nahr et al.
(2021)

food materials Not specify green supply chain

Nozari et al.
(2022)

interviews,
questionnaires

Fuzzy DEMATEL supply chain

Aliahmadi
et al. (2022)

consumers, producers,
suppliers

Not specify sustainable supply
chain

Durrant et al.
(2022)

images FL soft fruit production
optimization and fresh
food distribution
to Europe, Asia-Middle East, Asia, North America, Central America,
South America, Africa, Australia and New Zealand (Metos, 2022).

MyEasyFarm and its global partners work with farmers every day
to help them make the best choices and be more effective in max-
imizing competitiveness and profitability while protecting the envi-
ronment (MyEasyFarm, 2023). MyEasyCarbon engaged in low-carbon
projects by increasing carbon storage in the soil (carbon sequester-
ing) to reduce carbon emissions using digital tools that support the
agroecological transition.

Solutions provided by startups include Ferme d’Hiver (FH) in Can-
ada.5 FH is specialized in vertical agriculture. In FH’s farm, strawberries
are grown vertically in a closed controlled environment using LED illu-
mination, advanced HVAC and automatic irrigation without chemicals.
Intelligent controllers and AIoT are planned to be added to the product
offering. FH intends to sell its technology to provide local production
and reduce the need for foreign imports.

ISAGRI is a solution for grain growers that helps farmers to make
the best choices for their farming operations. It includes regulatory
safety as well as means to meet environmental challenges for better
optimization of pig farming, dairy farm management, sucker cattle
farming and small ruminant farming (ISAGRI, 2023).

ATIM monitors temperature in greenhouses and allows fast action
via SMS alerts and for example ensures mist spraying in the vineyard to
prevent damage due to frost (ATIM, 2023) until the temperature rises
again. It has been deployed in the Burgundy wine-producing region in
France.

Another solution for crop monitoring, cultivation and production
was developed by Elzeard. It enables farmers to schedule their pro-
duction activity for the entire season(s) using a planning module. It
handles the end-to-end agricultural plans from the determination of
the marketing requirements, the setting and production goals and the
optimization of crop rotations. The cultivation module consists of the
features required for crop monitoring, farm activity organization, and
data collecting for operation traceability (Elzeard, 2023).

The Agribot Platform, a United Kingdom smart agriculture solution
platform (Agribot Platform, 2023; Rai et al., 2022), enables farmers to
make disease treatment decisions that are both environmentally and
economically advantageous by giving them an understanding of crop
health which can be received on their smartphone. Agribot can perform
several tasks including AI-based disease diagnosis, crop health status,
the detection of soil stress and the measurement of localized weather.
The company also proposes an Agribot Edge solution to capture pic-
tures that are then processed using image processing software and AI
decision-making. When the application identifies an unhealthy crop or
stress problem, it will deliver a message outlining the problem and
can automatically perform the appropriate action depending on the
situation.

5 www.fermedhiver.com
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LEMKEN provides SA solutions such as soil cultivation (i.e., plough-
ing, reconsolidation, seedbed preparation and stubble cultivation), sow-
ing (drill seeding, precision seeding and intercrop seeding) and crop
care (fertilization technology) across Europe, Asia, North America and
Africa (LEMKEN, 2023).

Microsoft developed the FarmBeats system, recently transitioned to
a product called Azure FarmBeats, the Microsoft cloud-based agricul-
ture offering.6 It is a complete digital agriculture solution. Microsoft
works with its SA partners to prototype agricultural services for farm-
ers. The system gathers a lot of information, spatial, historical and
temporal, about every farm, from several data sources, such as drones,
satellites, sensors, cameras, tractors and weather stations. The technol-
ogy employs AI to combine this data and infer likely occurrences on
the farm. Partners have access to the information via APIs and they
may subsequently create agricultural insights for growers using their
in-depth agricultural knowledge (Chandra et al., 2022; Ye, 2021).

Agro Smart lab is another solution that provides mathematical mod-
els for scouting using the weather data obtained from the weather sta-
tion to predict diseases and monitor the appearance of pests (Smartlab,
2023).

Finally, Farms.io (farmsio, 2023) is an application for farm man-
agement, crop monitoring, carbon analysis, link to markets, production
traceability, land use and land cover, post-harvest climate change mon-
itoring and agriculture advisory. This is dedicated to helping a farmer
in decision-making as presented in Table 15.

5.1.3. Discussion
To summarize the entire review, we conclude that research on

crop and disease management has the highest number of published
articles, followed by smart monitoring and water management, then
soil management, smart harvesting and finally, the least cited topic,
supply chain management. This shows where research has focused and
opens ways for innovation.

Finally, regarding the datasets, there are some available datasets for
individual plants but we could not find an open or standard dataset for
agricultural and environmental parameters across different crops. One
of the common websites providing public datasets is Kaggle.com used
by several papers. However, the lack of data is a major challenge to the
implementation of AIoT in SA.

5.2. AIoT infrastructure for SA

This section explains AIoT architecture and frameworks used in SA.

6 https://www.microsoft.com/en-us/research/project/farmbeats-iot-
griculture/

http://www.fermedhiver.com
http://Kaggle.com
https://www.microsoft.com/en-us/research/project/farmbeats-iot-agriculture/
https://www.microsoft.com/en-us/research/project/farmbeats-iot-agriculture/
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Table 15
Industrial solutions.

Ref. Company Solutions

Crop-M Soil-M Water-M Disease-M Smart-H Supply chain-M

Nokia (2023), AeroFarms (2021) Nokia ✓ ✓ ✓ ✓

Metos (2022) Metos (by Pessl) ✓ ✓ ✓ ✓

ISAGRI (2023) ISAGRI ✓ ✓ ✓

ATIM (2023) ATIM ✓

Elzeard (2023) Elzeard ✓ ✓ ✓

Agribot Platform (2023), Rai et al. (2022) Agribot ✓ ✓

LEMKEN (2023) LEMKEN ✓ ✓

MyEasyFarm (2023) MyEasyFarm ✓ ✓ ✓

Chandra et al. (2022), Ye (2021) FarmBeats ✓ ✓ ✓

Smartlab (2023) AGRO SMART LAB ✓ ✓ ✓

farmsio (2023) Farmsio ✓ ✓ ✓ ✓ ✓

Crop-M: Crop management; Soil-M: Soil Management; Water-M: Water management; Disease-M: Disease Management; Smart-H: Smart Harvesting;
Supply chain-M: Supply chain Management.
Fig. 14. Percentage of the 5 most popular ML models used in the articles reviewed
in this survey. The percentage of every other remaining model (i.e., not mentioned in
this figure) is under 5%.

5.2.1. SA architectures
While there is no standard AIoT infrastructure for SA, many similar

architectures have been proposed. A common SA architecture com-
prises at the minimum an agricultural device layer, an edge/fog layer
or data gateway and a cloud layer as shown in Fig. 6. Different IoT
and AIoT devices can be deployed in the device layer for sensing,
monitoring and tracking different activities of SA. Connectivity sub-
layers can be added consisting of the short-range and medium-range
to long-range communications technologies. A connectivity layer 1
connects the AIoT devices layer with the edge/fog layer with short to
medium-range technologies and connectivity layer 2 links the edge/fog
layer with the cloud layer with long-range technologies. The edge/fog
devices are responsible for the processing of the data generated at
the device layer before transferring it to the cloud where it can be
further processed and stored as illustrated in Fig. 6. As was mentioned
previously, AI can be implemented horizontally and vertically at each
layer.

A more succinct cloud-based (C-B) two-layer infrastructure was
presented by Chen et al. (2020) where mobile devices and drones in the
first layer were used to capture pest images in fruit trees. The collected
data was then uploaded to a database in the cloud (cloud layer) for
processing (e.g., recognition of the pests images and identification of
the pests locations using deep learning algorithms). In addition, in
the 1st layer, environmental sensors collect data to provide meta-data
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for the crop growth analysis. This solution uses devices (i.e., smart-
phones, drones, and sensors) without AI capabilities and the AI is solely
cloud-based.

The architecture presented by Tomar and Kaur (2021) is also a
two-layer C-B architecture consisting of a data collection layer and
a cloud computing layer (cloud platform). The data collection layer
includes many different sensors (temperature, humidity, and moisture)
responsible for generating environmental data. The sensing devices
used in this study are intelligent devices that can perform some basic
AI-related inference tasks. The raw data can be sent to a gateway
through short and medium-range communications technologies for ex-
ample Bluetooth, WIFI, LORA, and SigFox and then to the cloud layer.
Data analysis, processing and storage are performed in the cloud. Users
can get access to the data and the analyzed results through the internet.
Preliminary implementation results validated the approach.

In the architecture presented in Chen et al. (2020), Tomar and
Kaur (2021), there is no specified layered architecture and each device
is vertically integrated into the cloud. This can bring some concerns
such as network traffic management and its impact on AI applications
efficiency and real-time decision-making.

The architecture described in Mitra et al. (2022) is a good exam-
ple of the three-layer Edge–Cloud (E–C) architecture for SA with an
agriculture devices layer, an edge layer, and a cloud layer. In the
device layer, sensors are deployed in various locations on the farm
to acquire physical and environmental parameters: in the field, in the
greenhouses, in animal paddocks, and on tractors. These end devices
are not intelligent as they cannot perform in-device processing and
would not be able to participate in AI decision-making: the intelligence
is potentially in the edge and the cloud. As in other solutions, the raw
data is transferred to the edge layer through WIFI, Bluetooth, and Z-
Wave gateways. Edge devices are responsible for processing, filtering
and encrypting the data before transmitting it to the cloud through
high-speed cellular technologies. The cloud layer can process, analyze
and save the massive data gathered on the farms.

The authors in Islam et al. (2021) also proposed a three-layer archi-
tecture consisting of perception, network and application layers. The
perception layer consists of sensing devices, such as RFID tags, terminal
devices and readers, used to collect data about pests, plant diseases,
nutrient levels, humidity, wind speed and temperature. The collected
data is transferred to the application layer via network connectivity.
Users can remotely access the cloud applications for monitoring and
controlling their farms.

Another three-layer C-B AIoT infrastructure is proposed in Guillén-
Navarro et al. (2020) with the now familiar devices, connectivity and
cloud layer. The devices layer of this system measures the environ-
ment and includes wind speed, humidity and temperature sensors. The
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sensed data is transmitted to the cloud layer where the LSTM analysis
capabilities are located. The data and results are accessible from the
cloud layer for monitoring and decision-making.

A more distributed infrastructure is available in Gupta et al. (2020).
It introduces a four-layer E–C AIoT architecture with a physical layer,
a network layer, edge layer and a cloud layer. Here again as in all
SA infrastructures, the physical layer, the ‘‘IoT devices layer’’ includes
sensors installed in a greenhouse or on farmlands, embedded in live-
stock, and added to autonomous tractors and drones (UAVs). Use cases
for these devices include sensing and monitoring the environment and
application-specific data and transmitting it to the edge layer through
the communications layer. These are traditional sensors in the sense
that they do not process the data or make decisions. The edge nodes
are used to complement the sensing by processing the received data:
real-time monitoring, visualization, and online ML model for detection,
prediction, and diagnosis. The edge also transmits the data to the cloud
for further processing: AI/ML, database clusters, data visualization, big
data analytics and storage.

A four-layer Fog–cloud (F–C) infrastructure is presented by
Muhammed et al. (2022). In addition, it introduced a user-friendly
component for obtaining the data automatically without human inter-
vention directly from devices using APIs. This system has the standard
end-device layer with the edge/fog, connection and cloud layers. The
end-devices layer provides the necessary information to provide the
data and create user requests. The edge/fog layer includes a user
request creator (URC), an inference and decision-making tools. The
model training is done in the cloud to benefit from more powerful
computing resources. Two connection layers are considered: the first
is located between the end-devices and edge/fog layers to transfer raw
data from end-devices to the edge/fog layer and the second is located
between the edge/fog and cloud layers to transfer data between them.

Continuing the four-layer concepts, Ferrández-Pastor et al. (2016)
also presented a four-layer E–C architecture consisting of a things
layer, an edge layer, a communications layer and a cloud layer. An
extension of this infrastructure, which is an E/F–C type is proposed
in Ferrández-Pastor et al. (2018). This architecture added a fog layer
between the edge and the cloud. The fog node aggregates the received
data from the edge nodes and transfers them to the cloud through
the communications layer. The cloud processes, analyzes and stores
the data. Here, as in most currently proposed architectures, there is
no AI processing at the IoT devices layer (things): all analysis and
decision-making are done at the edge, fog, and cloud layer.

Finally, targeted system performance and type of application is an
important factor to select among the mentioned architectures. Utiliza-
tion of edge intelligence for lightweight applications (e.g., acoustic and
ambient sensing in SA), will lead to an efficient system. However, more
compute-intensive applications may need more edge–cloud collabo-
ration (Alzuhair and Alghaihab, 2023) or edge-to-edge collaboration
to provide accurate results and systems with high energy efficiency
and optimized performance. Distributed learning and FL are two tools
that make these collaborations possible. A comparison of central ML
and FL performed for crop classification in a smart farm decentralized
network was reported by Idoje et al. (2023). The research utilized
climate data consisting of temperature, humidity, rainfall and pH for
crop classification using a federated averaging model. The analysis of
their result using the farm dataset showed that decentralized models
achieved a faster convergence and higher accuracy than the centralized
models (binary relevance Gaussian NB, Classifier chain Gaussian NB,
and Label Powerset Gaussian NB).

A summary of the existing SA AIoT infrastructure with their stren-
gths and weaknesses are presented in Table 16. As Table 16 shows
tightly coupled architecture is rarely used in the related work. While
the other domains as seen in Table 7 already started using tightly
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coupled architectures.
5.2.2. Frameworks/practical implementation of AIoT for SA
This section presents the available frameworks and practical imple-

mentation of AIoT for SA. Device management, model management,
support of various AI techniques and edge device integration are the
four main features of AIoT platforms mentioned by Panduman et al.
(2024). These frameworks need a data model to be built on top of it.
Most of these frameworks follow the FIWARE data model framework.7
Considering AIoT frameworks, the research presented by Rahmouni
et al. (2022b) illustrated an example of AIoT framework for precision
agriculture which showcases how AIoT can impact modern agriculture
by implementing data-driven solutions based on low-cost devices and
open source technologies, empowered by Edge Intelligence.8 Also, the
research of Li et al. (2022c) designed an AIoT system for SA based on
front and rear end separation and a Model View View Model (MVVM)
framework for handling complex business logics and easy integration
of AI algorithms. They constructed a web page for the front end using
Vue.js and Element and the rear end business logic using the Python
Django framework. The data interaction between the front and rear
end was via Axios. They integrated basic application functions such as
historical data query, real-time data monitoring, abnormal data alerting
and data visualization. Similarly, integrated deep learning plant disease
and pest detection algorithms. Another example for helping farmer in
mitigating the effects of climate change and improving their farming
practices to increase the quality of their crop yield and food production
was presented.9 In Amazon Web Services (AWS), a smart agriculture
startup based in France called Sencrop created a solution that enhances
prediction accuracy and gives farmers access to precise climate con-
dition insights to support data-driven decision-making. They build a
microclimate application on AWS using Amazon EMR (a cloud big
data solution for ML, interactive analytics and petabyte-scale data pro-
cessing). Almost 30,000 farmers improved the sustainability of SA by
reducing the use of spray treatment chemicals, water use and the trips
tractors and harvesters using Sencrop’s across Europe.10 The research
in Slama et al. (2023) presented AIoT Solution design, which is a simple
canvas to visualize the key functional elements of a solution, and AIoT
use case mapping, which clarifies how AIoT can best support typical
use cases. Additionally, it introduced the AIoT framework, which in-
cludes an overview of AIoT, technical execution, development life-cycle
perspective, data strategy, and design viewpoints and templates. The
AIoT framework addresses aspects such as the agile approach, DevOps,
trust and security, reliability and resilience, functional safety, and
quality management. There are some solutions in the AWS marketplace
examples can be EOSDA Crop Monitoring an online satellite-based
precision agriculture platform for field monitoring created by EOS
Data Analytics (EOSDA). It is a global provider of AI-powered satellite
imagery analytics. The platform is a one-stop solution that integrates
multiple types of data (crop health, weather conditions, crop rotation,
field activities, elevation, soil moisture, and a host of other types) all
in one place. Cropin Apps is another example of a solution in the AWS
marketplace that enables the digitization of complex processes and
workflows that span the complete agri-food value chain, a seed from
the farm to a warehouse, all the way up to the fork. These solutions help
streamline farm data capture and management and other complex field
operations involved during seed production, seeds strain tracking &
trialling across generations, crop protection and nutrition development
both on & off the field for row crops, horticulture and plantations.11

7 https://www.fiware.org/
8 https://github.com/nabs13/Smart-Farming-though-AI-and-IoT
9 https://github.com/IoT-Communications/Smart-Farming

10 https://aws.amazon.com/fr/solutions/case-studies/sencrop-case-study/
11
 https://aws.amazon.com/fr/solutions/agriculture/data-analytics/

https://www.fiware.org/
https://github.com/nabs13/Smart-Farming-though-AI-and-IoT
https://github.com/IoT-Communications/Smart-Farming
https://aws.amazon.com/fr/solutions/case-studies/sencrop-case-study/
https://aws.amazon.com/fr/solutions/agriculture/data-analytics/
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Table 16
AIoT architectures for SA.

Ref. Architecture NL AIoT Systems Limitation

E/F–C E–C F–C C-B Loosely Tightly NAIPED NEFN

(Khattab et al., 2016) ✓ 3 ✓ ✓

Ferrández-Pastor et al. (2016) ✓ 4 ✓ ✓

Ferrández-Pastor et al. (2018) ✓ 5 ✓ ✓

Chen et al. (2020) ✓ 2 ✓ ✓ ✓

Gupta et al. (2020) ✓ 4 ✓ ✓

Guillén-Navarro et al. (2020) ✓ 3 ✓ ✓ ✓

Tomar and Kaur (2021) ✓ 2 ✓ ✓

Islam et al. (2021) ✓ 3 ✓ ✓ ✓

Mitra et al. (2022) ✓ 3 ✓ ✓

Muhammed et al. (2022) ✓ 4 ✓ ✓

NL: Number of Layers; E/F–C: Edge/Fog–Cloud; E–C: Edge–Cloud; F–C: Fog–Cloud; C-B: Cloud-Based; Loosely: Loosely coupled; Tightly: Tightly
coupled; NAIPED: No AI Processing at the End Devices; NEFN: No Edge or Fog Nodes to process the data generated by end-devices.
5.2.3. Discussion
To summarize this section, we analyzed layering patterns of the

available architectures and it was gathered that three layers are the
most commonly adopted architectures followed by four layers. How-
ever, the two layers and five layers are found in rear cases. Similarly,
Most of the existing architectures are loosely AIoT systems and Cloud-
based architectures as they do not perform AI processing at the end
devices layer but send their data to the Cloud layer for AI processing.
For AIoT frameworks in SA, the AWS marketplace provides several
frameworks such as Sencrop, EOS Data Analytics (EOSDA) and Cropin
Apps for practical implementation of AIoT for SA.

5.3. AIoT technologies for SA

This section presents the existing technologies in SA in terms of AI,
IoT and communications technologies.

5.3.1. AI technologies/techniques in SA
In this section, we summarize the findings on the use of AI in SA.

Based on our reviews, we have noted that in smart monitoring solu-
tions, Convolutional Neural Networks (CNNs) are widely used because
of their higher accuracy in object detection and image classification.

For environmental monitoring such as temperature and humidity,
CNNs are widely complemented or replaced by more feed-forward arti-
ficial NN (ANN) as well as Recursive NN (RNN). For crop management,
supervised learning, including k-nearest neighbors (KNN), Naive Bayes,
support vector machines (SVM), Random Forest (RF), Decision Tree
(DT) and logistic regression are the most adopted models. Crop rec-
ommendation also relies on ensemble learning as shown in Table 9. In
soil management solutions, it is the SVM model that is mostly adopted,
ANN, KNN, FR and SVR were also frequently mentioned as presented
in Table 10. Similarly, for water management solutions, LSTM was the
most often cited model with ANN, Naive Bayes and linear regression
(Table 11).

For disease management solutions, our investigation reveals that
CNN is again most often used for disease detection and prediction, and
for pest detection and classification because of the robustness of CNN
and good accuracy in image classification. However, SVM, YOLOv3 and
ViT were also frequently used as they are widely available as presented
in Table 12.

CNN is still the most commonly adopted model for smart harvesting
which deals with object detection and classification properly. Other
models that were used include You Only Look Once (YOLO) YOLOv3,
YOLOv4 YOLO-tiny as presented in Table 13.

For supply chain management Fuzzy logic, blockchain and other
decision algorithms derived from big data were used (Table 14).

Furthermore, we listed all ML models used in the articles reviewed
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in this survey. These models are RF, LSTM, ReLU, YOLOv3, ViT, SVR,
MLP, Linear Reg., Logistic Reg., MLR, OpenCV, MNLR, NARX, RNN-
LSTM, CHAID, ResNet 16, ResNet 28, RNN, RVR, BRT, AE, GRNN,
MPR, GRU, DLT, NGBoost, XGBoost, GoogleNet, Inception, Rainbow,
TensorFlow, Inception V3, MobileNet, FCNN, Chain Vese, RPN, ResNet
101, ResNet 50, ResNet, YOLOv4 and YOLOv3-Tiny.

We then calculate the percentage of using each ML model in the
articles under review. Fig. 14 shows the percentage of the 5 most
popular ML models. The percentage of every other remaining model
(i.e., not mentioned in Fig. 14) is under 5%.

5.3.2. IoT technologies
IoT technologies collect data from the location or place where they

are deployed and use communications technologies to transfer the data
to the target layer for processing. These devices include but are not lim-
ited to sensors used for environmental monitoring such as temperature
sensors, soil moisture sensors, humidity sensors and so on. Similarly,
drones, satellites and other cameras are used for capturing images of
soil, pests and weeds. In this case, lightweight thermal and RGB (red–
green–blue) cameras are mounted on a UAV to capture images. One of
the other types of sensors used is for examining the audio signals. One
example can be the study which used this information for identifying
Queenlessness in Honeybee Hives using ML. This identification can
be used by beekeepers as a means of promptly alerting them if the
queen had died in any of their hives (Ruvinga et al., 2023). Some
other source of data is generated from agricultural machinery. Today’s
agricultural equipment can collect a lot of information about soil and
plants and machine performance as they operate in the field. For ex-
ample, nowadays, grain harvesting combines are equipped with a yield
monitoring system. Yield monitors can quantify and generate a map
that shows the yield variability throughout the field. At the same time,
the information generated by the yield monitor can be used to calculate
position, velocity, and time spent during the harvesting operations. This
information provides the field manager with information about the field
efficiency, lost time, and operator performance. It can also be used to
determine the optimum size of the combine for the given field size. The
gap in the current system includes the lack of sensors that collect all the
needed information. For example, no suitable sensor is commercially
available to measure and map the variability of soil nitrate in the field.
The data collected manually through field sampling often does not have
the resolution needed for site-specific data analysis. The sheer volume
of data needed for the decision support system and developing accurate
management decisions means that excellent metadata and good data
management are needed. Currently, some of the metadata collected

manually is not digitized or has data entry errors and is not dependable.
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5.3.3. Communications technologies
In SA, machine-to-machine (M2M) communications using many

network technologies and protocols are needed to collaborate and
share data. In addition, user applications and dashboards can be used
to communicate requirements and retrieve and illustrate analysis for
decision-making. Since in SA, sensors may be of different types and,
as was seen, many wireless and wired standards can be used, there is
a need for many technologies to provide SA connectivity. As a result,
it can be expensive to establish and maintain an SA network (Sahitya
et al., 2016; Chandra et al., 2022). Connectivity is also a major issue
in large rural areas due to the lack of access to reliable broadband
access. This is cited as one challenge in the deployment of SA solu-
tions. The lack of network infrastructure will affect SA operations. For
example, disruptions in wireless communication channels will prevent
SA devices from communicating to the cloud for data processing and
decision making (Mitra et al., 2022; Tao et al., 2021). This provides an
incentive to move a lot of the SA data management to the edge and fog
outside well-deserved areas. Given these challenges, there is a need to
provide secure and robust communication for SA and look at functional
decomposition to use local and edge resources, not just the cloud. The
stakes are high but investments are flowing in. The United States (US)
announced an initiative to bring broadband everywhere and compared
it to the electrification efforts of 100 years ago. Initiatives like ARA
Wireless12 in the US also plan to bring broadband wireless (including
free space optics) to rural areas. The 5GS Ambient IoT service study
item in 3GPP release 19 is another initiative that includes agriculture
use cases also from communication and architecture point of view
reported in AmbientIoT3GPP (2023).

5.3.4. Discussion
In this section, we presented a summary of our findings in AIoT

technologies based on our reviews. We have noted that the three
most widely adopted AI technologies are CNN because of their higher
accuracy in object detection and image classification, SVM and ANN.
Considering IoT technologies, the commonly adopted IoT devices are
sensors that are used for monitoring activities. Similarly, drones, smart
cameras, embedded systems, smartphones and RFID are also used
for capturing field data. For communications technologies, the most
commonly used communications technologies well-adapted for SA at
the end-devices layer are LoRaWAN, ZigBee and BACnet due to their
low power consumption, small size, ease of implementation, simplicity,
scalability, range (usually medium) and in the case of BACnet heritage
from industrial automation. In addition, there are some studies to adapt
WIFI for SA, such as ‘‘WIFI-based long distance (WiLD)’’ proposed
by Ahmed et al. (2018) for monitoring and controlling smart farming
in rural areas because of its low cost.

6. Challenges and future directions

Recent advances in AIoT in SA including AI-based decision systems,
robotics, sensors and their applications will positively impact food
production and offer avenues for innovation. In order to address how
to achieve the goals of the implementation of AIoT in SA, we present a
list of the existing and potential challenges and offer future directions.
It is important to highlight that these challenges are not only for SA but
also for many other applications. However, the level of importance and
priority of a challenge can be different from one application (e.g., SA)
to another (e.g., healthcare).

12 arawireless.org
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6.1. Energy

Access to clean and affordable energy is a major challenge in SA,
especially in greenhouses and CEA. In addition, the need for long-
duration and sustainable power sources for sensors is needed to reduce
the Operational Expenses (OPEX) related to batteries and maintenance.
This is especially challenging for sensors that need to be placed in the
soil at different depths, making them very hard to access individually.
There are some efforts at the research stage to develop biodegradable
batteries that will resolve some of the sustainability of sensing and
hence SA which can be seen as one of the future directions related to
the energy challenge in SA.

In addition, there are several efforts to address power consumption
in SA suggesting using renewable energy solutions (Liu et al., 2018;
Ram et al., 2020; Huang et al., 2020). Also, an efficient micro-grid
architecture with renewable energy was presented by Ebrahimi et al.
(2019) but it is a preliminary design. Hydroelectric power is currently
used in countries where it is readily available.

Hydroelectric power can be part of a sustainable future. As many
sensor nodes used in AIoT are equipped with small batteries, balancing
and saving of energy consumption in the network of sensors is another
energy-related issue. As a solution, Yu et al. (2022) proposed an energy-
aware device scheduling solution for optimizing the device selection
and assigning communication resources to the optimal edge node to
reduce global loss. As a future direction, it is required to offer more
intelligent solutions for scheduling and management of sensor motes
(e.g., combining ML and heuristics methods).

Putting all the pieces together, in a nutshell, it is required to design
more energy-efficient sensor motes, find cheaper and simpler solutions
than existing solutions to recharge the batteries (e.g., new methods of
using solar energy for recharging the batteries) and use more intelligent
solutions for scheduling and management of sensor motes.

6.2. Hardware availability

Maintenance and replacement of equipment such as sensor motes,
gateways, processing devices, and lights in greenhouses and CEA is
another challenge. As a result of hardware CAPEX, many small farmers
will avoid deploying SA or will only use simple solutions which in
the end could affect their revenues. Good quality SA sensors can cost
up to hundreds of dollars and drones with cameras cost thousands of
dollars (Chandra et al., 2022).

Deciding the number of sensors needed to capture the soil and plant
data is another CAPEX decision. For example, monitoring soil nitrate
variations may require many sensors that could be very costly. In this
regard, sharing data and virtual devices (e.g., virtual weather station)
usage is going to be one of the future directions.

6.3. Privacy, security and ethical issues

Like all cloud-based infrastructures, SA is also exposed to server
attacks (Rettore de Araujo Zanella et al., 2020). Securing the equipment
as well as protecting the data from attacks and unauthorized access
need to be considered when engineering an AIoT-based SA system.
Some solutions have been proposed to tackle this latter issue (Gupta
et al., 2020; Chakraborty and Bhunia, 2009; Bathalapalli et al., 2021).
However, today’s existing SA technologies are resource-limited, making
security measures practice difficult. Thus, data security and privacy
remain a serious challenge in SA as the security and privacy of sen-
sitive spatial, temporal and spectral information of crops are a serious
concern for farmers (Pham et al., 2021).

For this reason, blockchain tracing is starting to be used in SA.
Authors in Jadav et al. (2023) proposed a framework that used AI and
blockchain tracing to minimize the use of pesticides predicting crops
with pesticides above the threshold. Research reported in Zheng et al.
(2023), also presented an integration of blockchain in the SA for the

https://arawireless.org
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analysis of the optimal traceability strategies for agricultural products
to guarantee fraud-free and sustainable agricultural supply chains.

Finally, access to the facilities themselves needs protection. The
equipment security breach can be caused by the farm animals de-
stroying access systems, and by farm workers compromising the SA
environment. Hence, cyber–physical security is needed across all layers
of the SA infrastructure.

The ethical issues are another concern in using AIoT for SA. Intellec-
tual property (including intellectual data and algorithms/ML models) is
one of the main ethical concerns where SA data owners (e.g., farmers
and stakeholders) should have control over the data generated by AIoT
devices on the farms and the algorithm and ML model applied to them.
The data owners should know (and permit) how and where their data is
being used. They should have the right to consent or opt out. FL is con-
sidered as a promising technique that can also solve or, at least, reduce
several ethical and privacy concerns in the future. Developing robust
encryption, authentication and access control mechanisms to safeguard
agricultural data can be future research direction for addressing privacy
and Security SA.

6.4. Scalability and reliability

In SA, farm sizes vary from small individual farms to large com-
mercial operations. We can see an example of a single greenhouse area
with nearly 70,000 square meters, equivalent to ten standard football
field sizes in AmbientIoT3GPP (2023). Hence, different quantities of
sensing equipment (sensors and associated computing elements) are
needed. Consequently, variable data traffic loads will be generated.
And to allow SA growth, this technology needs to be scalable. The
layered approaches described previously may provide this scalability
and it explains that they are widely considered for SA deployment.

SA also needs to provide reliable solutions. Sensors in open fields
can be exposed to harsh environments, humidity, extreme temperatures
and heavy rainfall. In greenhouses and CEA they are also exposed
to environmental variations. Malfunctions due to sensor damage will
disrupt the operations. Inaccurate decisions due to a defective sensor
also will have impacts on revenues. For example, in paddy rice farming
if damaged sensors cannot report the correct soil water content, it will
lead to serious consequences: damaging the crop, reducing yield, im-
pacting the food supply chain and eventually causing a price increase.
Hence, to reduce OPEX and minimize downtime in the SA operation,
there is a need for reliable and fault-tolerant devices to reduce the
need for or the number of redundant devices to respond to faults and
equipment breakage (Chandra et al., 2022). In addition to reliable and
fault-tolerant devices design, providing a mechanism that checks the
functionality and remaining energy level (residual energy) of the sensor
nodes with timely replacement of the batteries or other power sources
will be an essential future work for SA in this type of production.
Reliability is a key element.

6.5. Data access

The different systems that are part of the sensing layer need integra-
tion to implement AI decision-making. Data science and the advances
in ‘‘big data’’ allow the creation and management of the large datasets
needed for SA. As was discussed earlier in this survey, the supply chain
end-to-end efficiency of SA systems can be improved and food security
issues can be mitigated with predictive analysis and real-time decisions
on large datasets (as an example, Kempenaar et al. (2016) uses the
datasets in the milk industry). The SA data workflow starting with the
collection to the analysis is presented in Wolfert et al. (2017), Bhat and
Huang (2021). In addition, the use of big data analysis and data science
in SA enables new business models (Wolfert et al., 2017).

However, a major challenge facing the real deployment of SA is
the lack of integrated and open datasets for research and deployment.
While there are existing commercially available integrated sensing and
20
processing systems, they are often too expensive for small-scale farms.
Also, many farmers will want to improve on their existing capabilities
not just replace all equipment: hence multiple data acquisition systems
need to inter-operate, something that they were not designed for. And
while they could be co-located often one needs to get to the cloud to
retrieve the data as was previously mentioned. As a result, the data
will be heterogeneous in nature (different formats, time granularity and
precision). Delays incurred in cloud access also with impact real-time
operations.

Data normalization is another issue. Sensor nodes, including cam-
eras, collect a lot of data, and correlation and bias need to be addressed
when using that data for decision-making. Hence a challenge is to nor-
malize and transform the raw data into usable information (a process
called ETL or extract transform load) that can then be used for training,
inference, decision-making or digital twinning. This normalization is
even more important if federation across locations is wished for. In
addition, for supervised learning, data labeling is essential. Services like
Sagemaker from AWS can be used.13 However, their use in SA has not
been proven and data labeling may remain a time-intensive human task
for the near future.

But data transformation is not all. The datasets need to be open
for testing and training agriculture systems but also for validation.
To complicate things, equipment suppliers and farm operations alike
may be reluctant to open their data as it could reveal trade secrets.
Hence a big challenge for SA system developers is creating their own
datasets to gather enough data to be able to implement and test both
new equipment and algorithms. Digital Twins can be used to generate
synthetic data but they themselves need access to some real-time data
so their use can be limited.

Hence, it is a fact that SA development and implementation outside
the confines of a laboratory is limited by the access to open and
accessible data. As this is now a problem identified across the industry,
there will be more and more initiatives to standardize and open sensor
and system data in the future. Developing techniques to effectively fuse
and analyze diverse data types for more accurate and holistic insights
can be a future research opportunity for data access.

6.6. Artificial Intelligence for AIoT

As seen in previous sections, over the last decade, new AIoT tech-
nologies/methods such as CNN and FL have been widely used and
deployed in a variety of different use cases (e.g., in smart cities and
smart healthcare). These technologies are in the early stage of de-
ployment in SA. While AI is now considered essential in achieving
cost-effective and efficient farming, there are many challenges before
AI can become an agricultural mainstay:

• There is still very little interaction between AI research and the
agricultural industry. As a consequence, the AI researchers are not
well aware of the farming requirements and OPEX and CAPEX
challenges, and the farmers often do not understand AI tech-
nologies and what they can bring to their operations. Therefore,
there is a need for more interdisciplinary collaborations among
all stakeholders and a better technology transfer of academic
research into commercial deployment.

• There is a lack of well-established legal framework, policies and
regulations, for the implementation of AI in SA. In academic
settings, many legal aspects of operations are not addressed.
For example, a majority of proposed AIoT solutions in SA are
vertically integrated and cloud-based. Without security audits,
this may make them vulnerable to data breaches, cyber-attacks
and compromised privacy. This is one concern that is making
farmers wary of AI technologies. The emergence of edge AI seems

13 https://aws.amazon.com/sagemaker/data-labeling/

https://aws.amazon.com/sagemaker/data-labeling/
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to slowly mitigate the problem as it provides higher data privacy
and security, as well as lower latency and cost by processing the
sensor data at the local farm premises even if it adds complexity
and cost (Bhat and Huang, 2021).

• AI can only be a game changer in remote rural areas with the
availability of broadband wireless networks. And because of the
data volume, it may also need novel data, image and video
compression (Gia et al., 2019) that sends the compressed data to
the fog layer and then to the cloud using the broadband network
but at lower rates.

• AI needs data. Many important data for SA cannot be easily
collected and it was discussed previously that datasets are hard
to come by.

FogFL for training the smart irrigation scheduling (Saha et al.,
020) was discussed in the previous section. But while FL can be a
andidate to provide AI in SA using local datasets and information, FL
or multi-farm scenarios is not yet an active area of research. One of the
hallenges may be a lack of trust in data: farmers may manipulate the
ensors and the sensors may not provide correct information regarding
heir farms. However, the complexity of FL (and impacts on OPEX
nd CAPEX due to the local equipment need and its maintenance)
ersus centralized NN in the cloud has also an impact on its wider
eployment. Therefore, FL applications in multi-farm scenarios can be
xplored more in the future. In addition, developing more sophisticated
I algorithms for robotic perception, control and decision-making in
ynamic agricultural environments and also Optimizing the distri-
ution of computational tasks between edge devices and the cloud,
nsuring seamless communication and developing efficient edge-based
I models can be the focus for the future research in AI for AIoT.

.7. Capital investment

In most rural areas and in particular in developing countries, agri-
ulture earns a meager profit margin. Because of the initial investment
ecessary in SA for acquiring, installing and testing advanced tech-
ology SA faces an obstacle before mass-scale deployment can be
onsidered. (Chandra et al., 2022). Traditional farm loans and other
gricultural financial instruments are ill-suited for SA and AIoT. New
unding policies are needed that recognize the importance of SA so that
armers can buy AIoT equipment along with traditional machinery and
aterials (seeds, fertilizers, pesticides, herbicides, etc.).

.8. Lack of common standards

There are plenty of wired and wireless standards for communica-
ions in IoT and AIoT-based SA uses a large number of them. However,
ustomized solutions lack common standards and interoperability is
till provided by gateways with added costs, complexity and reliability
mpacts. The lack of standards also increases the price of the SA
roducts. And as it was discussed before, there are no standards in
ata collection and datasets, which creates delays in SA design and
mplementation. Global uniform and harmonized standards in SA, at
he device, network and data levels are needed to reduce the time to
arket and reduce the price of the products (Mitra et al., 2022). From

he communications and architecture point of view, the efforts in 5GS
mbient IoT service study item in 3GPP including agriculture use cases
lso can be mentioned as 2024 activities (AmbientIoT3GPP, 2023).
xploring frameworks and policies for responsible AI deployment in
griculture, including issues related to data ownership, transparency
21

nd fairness can be a new research opportunity in standards.
6.9. User-centric design

The number of SA farms is still very low compared to the number
of farmers engaged in traditional farming. For example, in Sub-Sahara
Africa, only 13 percent of small farm operations register for digital
services and not all of them are active (Chandra et al., 2022). Price is
of course a major driver but user interaction with the technology also
needs to be considered.

User acceptability will be essential for SA. User-centric design is
now part of any innovation and a major element of system design. For
users to accept innovation, they need to be directly involved in the
design process and give their input in the requirements gathering and
the end product design. In addition, designing the system is different
from understanding it hence farmers and developers need to interact.

In SA, some of the existing technologies are not user-friendly:
they were developed for large-scale operations and required specific
knowledge and expertise. Most farmers in rural areas do not possess
the operational and technical knowledge to integrate SA in their pro-
duction. Providing user-friendly systems and educating the farmers can
address this problem. For example, testbeds and ‘‘Living Lab’’ systems
can directly show the farmers the advantages (e.g., increase in product,
revenue, minimizing loss, etc.) the systems will provide.

The support of multiple languages is also important. There are now
automatic translation modules in a large number of languages that
can be integrated into an application to help the end-users to get an
understanding of the proposed system (Muhammed et al., 2022) and
to use it appropriately.

AI can help in this acceptability. It provides future directions on
how to design more automatic and robust systems that need less input
from farmers. The rise of Extended Reality (XR) in agriculture may
also support workers and operators in their daily activities (Anastasiou
et al., 2023). Designing cost-effective, user-friendly solutions that lever-
age local knowledge and resources to enhance agricultural productivity
is a future research opportunity for user-centric design.

6.10. Simulators and digital twins

One way to test AIoT-based SA systems is to use simulators and
increasingly Digital Twins. One of the successful simulators in the
domain is the Agricultural Production Systems Simulator (APSIM) was
proposed in 1990 and provides deterministic modeling of cropping and
pasture systems (Holzworth et al., 2018, 2014). APSIM performance has
been improved by the Agricultural Production Systems Research Unit
in Australia recently (Holzworth et al., 2006; Vogeler et al., 2023).

In addition to the simulators, some platforms allow testing new
agriculture-related solutions such as Fed4FIRE14 and ARA Wireless.15

Moreover, Digital Twins are emerging in SA. A Digital Twin is
the interaction between a physical and digital object which allows
for real-time, two-way communications between digital and physical
items (Alves et al., 2023; Verdouw et al., 2021; Alves et al., 2023)
proposed a Digital Twin for smart irrigation where farmers can evaluate
the behavior of an automated system before implementing it. Others are
in development and part of large research programs such as the one
in the Institute for Resilient Agriculture (AIIRA) based at Iowa State
University.16 Wageningen University and Research also has launched 3
Digital Twin projects in January 2020 including virtual tomato crops.17

Ferme d’Hiver and the University of Montreal also worked on a Digital
Twin prototype for strawberry growth in CEA (Istvan et al., 2023).
However, there are not many (if any) mature Digital Twin models for

14 https://www.fed4fire.eu/demo-stories/oc2/farmsens/
15 https://arawireless.org/
16 https://aiira.iastate.edu/
17 https://www.wur.nl/en/research-results/research-programmes/research-

investment-programmes/digital-twins.htm

https://www.fed4fire.eu/demo-stories/oc2/farmsens/
https://arawireless.org/
https://aiira.iastate.edu/
https://www.wur.nl/en/research-results/research-programmes/research-investment-programmes/digital-twins.htm
https://www.wur.nl/en/research-results/research-programmes/research-investment-programmes/digital-twins.htm
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any crops yet and this is a future direction for SA. In addition, effective
decision-making requires consideration of the context features to which
Digital Twins belongs. In order to facilitate data exchange, the reuse
of ontologies and improve semantic interoperability, contextualized
ontologies (Rico et al., 2023) and ontology quality evaluation design
are needed (Tiwari and Garg, 2022).

7. Conclusion

Recently, there has been an increasing amount of carried research,
development, and implementation of AIoT in SA. However, there is
still lack of a comprehensive survey of AIoT from a smart agriculture
perspective covering all important aspects. It was the goal of this paper
to survey SA landscape covering AIoT architectures, solutions, and tech-
nologies as they apply to SA. In addition, the paper wanted to highlight
the current challenges and future research directions including data,
connectivity, DT and CNN, XR, and FL to trigger further work in this
emerging field. SA will be essential for the sustainability of agricultural
production and this paper showed the progress to date and opened
paths for the future. In the future work, we will study different key
values that SA solutions should satisfy such as social, economic and
exclusiveness aspects as the right technology might be different for
different countries and cultures.
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